**ALI MUHSON** 

# Analisis Statistik dengan SmartPLS

PATH ANALYSIS, CONFIRMATORY FACTOR ANALYSIS, & STRUCTURAL EQUATION MODELING



PROGRAM PASCASARJANA UNIVERSITAS NEGERI YOGYAKARTA 2022 Analisis Statistik dengan SmartPLS:

Path Analysis, Confirmatory Factor Analysis, & Structural Equation Modeling

Oleh: Ali Muhson

#### PROGRAM PASCASARJANA

#### UNIVERSITAS NEGERI YOGYAKARTA

2022

# DAFTAR ISI

| COVER                                        | i   |
|----------------------------------------------|-----|
| DAFTAR ISI                                   | iii |
| PENDAHULUAN                                  | 1   |
| Mengenal SmartPLS                            | 1   |
| Persiapan                                    | 2   |
| Langkah Analisis                             | 2   |
| Penafsiran Hasil Analisis                    | 3   |
| Bagian 1. Analisis Jalur                     | 5   |
| Tujuan                                       | 5   |
| Contoh Model                                 | 5   |
| Langkah-langkah analisis                     | 5   |
| Persiapan                                    | 5   |
| Memulai Project                              | 6   |
| Analisis PLS Algorithm                       | 9   |
| Analisis Bootstrapping                       | 10  |
| Bagian 2. Confirmatory Factor Analysis (CFA) | 13  |
| Tujuan                                       |     |
| Contoh Masalah                               | 13  |
| Langkah-langkah analisis                     | 13  |
| Persiapan                                    | 13  |
| Memulai Project                              | 14  |
| Analisis PLS Algorithm                       | 17  |
| Bagian 3. Structural Equation Model (SEM)    |     |
| Tujuan                                       |     |
| Contoh Masalah                               | 21  |
| Langkah-langkah analisis                     | 21  |
| Persiapan                                    |     |
| Memulai Project                              |     |
| Analisis PLS Algorithm                       | 24  |
| Analisis Bootstrapping                       |     |
| Referensi                                    |     |

## PENDAHULUAN

## **Mengenal SmartPLS**

Statistik adalah kumpulan data yang bisa memberikan gambaran tentang suatu keadaan yang ditekankan pada angka. Sedangkan statistika adalah Ilmu yang mempelajari cara-cara pengumpulan, penyajian, analisis, interpretasi dan pengambilan kesimpulan dari data yang didapat. Dalam pengertian yang lebih luas, statistik artinya kumpulan data dalam bentuk angka maupun bukan angka yang disusun dalam bentuk tabel (daftar) dan atau diagram yang menggambarkan (berkaitan) dengan suatu masalah tertentu. Biasanya suatu data diikuti atau dilengkapi dengan keterangan-keterangan yang berkaitan dengan suatu peristiwa atau keadaan tertentu. Secara umum fungsi statistik adalah sebagai alat bantu dalam mengolah hasil penelitian. Banyak ragam analisis yang dilakukan dalam penelitian, salah satunya yaitu SEM (Structural Equation Modeling).

SEM merupakan suatu metode analisis statistik multivariat pengembangan dari regresi dan analisis jalur. Olah data SEM lebih rumit, karena SEM dibangun oleh model pengukuran dan model struktural. Di dalam SEM terdapat 3 kegiatan secara bersamaan, yaitu pemeriksaan validitas dan reliabilitas instrumen (confirmatory factor analysis), pengujian model hubungan antara variabel (path analysis), dan mendapatkan model yang cocok untuk predeksi (analisis model struktural dan analisis regresi). Sebuah pemodelan lengkap pada dari model pengukuran (measurement model) dasamya terdiri dan structural model atau causal model. Model pengukuran dilakukan untuk menghasilkan penilaian mengenai validitas dan validitas diskriminan, sedangkan model struktural, yaitu pemodelan yang menggambarkan hubungan-hubungan yang dihipotesakan. Untuk melakukan olah data SEM dengan lebih mudah dapat menggunakan bantuan software statistik. Saat ini sudah tersedia berbagai macam software untuk olah data SEM diantaranya adalah Lisrel, AMOS dan Smart PLS.

Penggunaan analisis SEM berbasis covariat semacam Lisrel dan AMOS, menuntut berbagai macam persyaratan yang sangat ketat mulai dari kecukupan jumlah sampel, skala pengukuran data, model fit, dan pemenuhan asumsi lain seperti normality, linearity, dan multikolinearity. Untuk mendapatkan data yang memenuhi semua syarat tersebut seringkali sulit untuk dipenuhi sehingga perlu ada alternatif lain. Analisis SEM berbasis Partial Least Square dapat menjadi jawaban yang tepat untuk mengatasi kelemahan tersebut. Analisis ini tidak menuntut banyak persyaratan, tapi model yang dihasilkan cukup handal untuk digunakan. Salah satu program yang populer digunakan adalah SmartPLS.

SmartPLS. Beberapa kelebihan dari software SmartPLS yaitu antara lain : (1) SmartPLS atau Smart Partial Least Square adalah software statistik yang sama tujuannya dengan Lisrel dan AMOS yaitu untuk menguji hubungan antara variabel; (2) Pendekatan smartPLS dianggap powerful karena tidak mendasarkan pada berbagai asumsi. (3) Jumlah sampel yang

dibutuhkan dalam analisis relatif kecil. Penggunaan Smart PLS sangat dianjurkan ketika kita mememiliki keterbatasan jumlah sampel sementara model yang dibangung kompleks. hal ini tidak dapat dilakukan ketika kita menggunakan kedua software di atas. Lisrel dan AMOS membutuhkan kecukupan sampel; (4) Data dalam analisis smartPLS tidak harus memiliki distribusi normal karena SmartPLS menggunakan metode bootstraping atau penggandaan secara acak. Oleh karenanya asumsi normalitas tidak akan menjadi masalah bagi PLS. Selain terkait dengan normalitas data, dengan dilakukannya bootstraping maka PLS tidak mensyaratkan jumlah minimum sampel; (5) SmartPLS mampu menguji model SEM formatif dan reflektif dengan skala pengukuran indikator berbeda dalam satu model. Apapun bentuk skalanya (rasio kategori, Likert, dam lain-lain) dapat diuji dalam satu model. Namun kelemahan dari SmartPLS yaitu SmartPLS hanya bisa membaca data Excel dalam bentuk CSV.



Gambar 1. Tampilan Website

## Persiapan

Persiapan yang harus dilakukan dalam menggunakan smartPLS adalah

- 1. Daftar dan Download Software PLS dari <u>www.smartpls.com</u> (lihat Gambar 1);
- 2. Install PLS yang sudah didownload dengan kode akses "user id" yang diterima by email jika menggunakan PLS Professional (full version);
- 3. Bila menggunakan student version tidak perlu daftar login dengan "user id";
- 4. Persipakan data di Ms Excel dan sudah di "save as" dalam format data CSV (comma delimited).

## Langkah Analisis

Secara umum, proses pengujian hipotesis dengan SmartPLS 3 adalah sebagai berikut:

- 1. Menyiapkan data dalam file Microsoft excel dengan format CSV (comma delimited).
- 2. Membuka program (software) SmartPLS 3 (lihat Gambar 2)
- 3. Create New Project → Membuat new project

- 4. *Import Data File* → Meng-import data yang sudah disiapkan (poin 1)
- 5. Menggambar model penelitian yang terdiri dari beberapa variabel laten
- 6. Memasukkan data kuesioner (indikator) ke dalam variabel laten
- 7. Melakukan pengujian kualitas model pengukuran (PLS algoritm)
- 8. Melakukan pengujian hipotesis (bootstrapping)





## Penafsiran Hasil Analisis

Tahap - tahap penafsiran hasil analisis SmartPLS meliputi 3 tahap, yaitu :

- Tahap pengujian outer model merupakan tapah pengujian model pengukuran yang bertujuan untuk membuktikan validitas & mengestimasi reliabilitas indikator dan konstruk. Beberapa persyaratan yang harus dipenuhi adalah:
  - a. Loading factor indikator harus lebih dari 0,7
  - b. AVE konstruk reflektif lebih dari 0,5
  - c. akar kuadrat AVE harus lebih besar dari korelasi antarkonstruk
  - d. Cronbach Alpha lebih dari 0,7 dan composite reliability lebih dari 0,7
- 2. Tahap pengujian Goodness of fit model yang bertujuan untuk menguji kekuatan prediksi model dan kelayakan model. Kriteria yang harus dipenuhi meliputi:
  - a. Q2 predictive relevance untuk melihat kekuatan prediksi model => output smartpls blindfolding
  - b. Model Fit untuk melihat layak tidaknya model dan data untuk menguji pengaruh variabel. Syaratnya SRMR harus kurang dari 0,10

- 3. Tahap pengujian inner model => untuk menguji signifikansi pengaruh dari variabel eksogen terhadap variabel endogen
  - a. uji signifikansi => berpengaruh signifikan jika p value < 0,05 atau T value > 1,96 => output smartpls bootstrapping
  - b. besar pengaruh parsial => f2 => output smartpls algorithm
  - c. besar pengaruh simultan => R<sup>2</sup> => output smartpls algorithm

## Bagian 1. Analisis Jalur

# Tujuan

Untuk menganalisis hubungan sebab akibat yang terjadi pada regresi berganda jika variabel bebasnya mempengaruhi variabel tergantung tidak hanya secara langsung tetapi juga secara tidak langsung

## **Contoh Model**



# Langkah-langkah analisis

- Persiapan
- 1. Menyiapkan Data

Siapkan data yang akan dianalisis dalam format basis data yang dapat dibuat dengan program Microsoft Excel. Dalam latihan ini sudah disiapkan data dalam format Excel yang disimpan dalam file *DataAnalisisJalur.xls.* Berikut format entry datanya:

| A  | utoSave 💽  |                    | <b>? ~</b> (~ ~                | l∰ ·          | DataAr                 | nalisisJalur. |
|----|------------|--------------------|--------------------------------|---------------|------------------------|---------------|
| Fi | le Hom     | ne Insert          | t Draw                         | Page Lay      | vout Foi               | rmulas        |
| Pa | Clipboard  | y ¥<br>nat Painter | Calibri<br><b>B</b> I <u>L</u> | ~ 11<br>1 ~ I | ~ A^ A<br>& ~ <u>A</u> | 4°   ≡<br>- ≡ |
| A1 |            | • : ×              | √ fx                           | ; x1          | _                      |               |
|    | A          | В                  | С                              | D             | E                      | F             |
| 1  | ×1<br>4.40 | xZ<br>3 79         | yı<br>3.52                     | yz<br>4 41    |                        |               |
| 3  | 4.04       | 3.93               | 3.91                           | 4.00          |                        |               |
| 4  | 3.64       | 4.21               | 4.35                           | 4.35          |                        |               |
| 5  | 3.80       | 4.29               | 4.30                           | 3.94          |                        |               |
| 6  | 3.32       | 3.64               | 3.39                           | 3.41          |                        |               |
| 7  | 3.64       | 3.79               | 3.74                           | 3.94          |                        |               |
| 8  | 4.08       | 3.64               | 4.35                           | 4.59          |                        |               |
| 9  | 3.88       | 3.57               | 3.96                           | 4.53          |                        |               |
| 10 | 4.24       | 3.86               | 3.87                           | 4.00          |                        |               |
| 11 | 4.16       | 3.79               | 3.65                           | 3.71          |                        |               |
| 12 | 4.72       | 4.29               | 4.00                           | 4.29          |                        |               |

Data di atas harus di save as ke dalam format CSV dengan cara: klik *File → Save As → pilih file type CSV (Comma delimited) → Save* (Perhatikan lokasi dan folder perekamannya)



2. Jalankan program SmartPLS sehingga muncul gambar berikut:

| Save New Project New Path Model |
|---------------------------------|
| Project Epilorer                |
| Indicators XXX                  |
|                                 |

#### • Memulai Project

 Tentukan lokasi project yakni drive dan folder yang akan digunakan sebagai lokasi penyimpanan dengan cara: Klik *File → Switch Workspace* lalu pilih atau buat folder sesuai yang diinginkan, misalnya Latihan.

- Membuat project baru dengan cara Klik File → Create New Project untuk memulai pengolahan data dengan Smart PLS. Buatlah nama project tersebut. Dalam contoh ini menggunakan "Analisis Jalur". Kemudian klik Ok
- Mengimport data dari CSV ke SmartPLS dengan cara Klik File → Import Data File. Lalu pilih lokasi atau folder penyimpanan data CSV yang sudah disiapkan sebelumnya. Klik file DataAnalisisJalur.csv klik OK sehingga akan muncul gambar berikut:

| Save New Project                                                                   | Rew Path Model | Add Data Grou                                               | ip Ger                                                   | 9<br>erate Dat                                         | Groups                                                 | d                                       | lear Data                               | Groups                                     |                                             |                                             |            |                   |
|------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|------------|-------------------|
| Project Explorer  Analisis Jalur  Analisis Jalur  DataAnalisisJa, 1200 re  Archive | cords]         | DataAna<br>Delimiter:<br>Value Quo<br>Number F<br>Missing V | lisisJalur.bt =<br>ote Characte<br>ormat:<br>alue Marker | Comr<br>r: <u>None</u><br><u>US (e</u><br><u>None</u>  | na<br>xample: 1                                        | ,000.23                                 | Encoo<br>Samp<br>Indica<br>Missir       | ling:<br>le size:<br>tors:<br>ng Value     | UTF-<br>200<br>4<br>s: 0                    | 8                                           | Re-Analyze | Open External     |
| 🕥 Indicators                                                                       | YYY            | Indicators:<br>x1<br>x2<br>y1<br>y2                         | Indicator Co<br>No. Missing<br>1 (<br>2 (<br>3 (<br>)    | rrelations<br>Mean<br>3.841<br>3.663<br>3.775<br>3.881 | Raw File<br>Median<br>3.880<br>3.640<br>3.780<br>3.880 | Min<br>2.840<br>2.500<br>2.650<br>2.530 | Max<br>4.760<br>4.790<br>4.700<br>5.000 | Standa<br>0.366<br>0.375<br>0.372<br>0.444 | Excess<br>-0.130<br>0.316<br>0.078<br>0.011 | Skewn<br>0.023<br>0.082<br>-0.289<br>-0.203 |            | Copy to Clipboard |
|                                                                                    |                |                                                             |                                                          | _                                                      | _                                                      | _                                       | _                                       |                                            |                                             |                                             |            |                   |

4. Menggambar model dengan cara double klik di gambar berikut: Analisis Jalur sehingga akan muncul gambar berikut:

| Eile Fr | tPLS: D:\@MyData\Bukuku\Smar                                     | tPLS\Latihan |                      |                          |                   |         |           | _      | o ×        |
|---------|------------------------------------------------------------------|--------------|----------------------|--------------------------|-------------------|---------|-----------|--------|------------|
| Ł       | 🗔 🤱 🔄 🕭 Q 🔍                                                      | Select Late  | ent Variable Connect | Quadratic Effect         | Anderating Effect | Comment | Calculate |        |            |
| Pro.    | ect Explorer                                                     |              | DataAnalisisJalur 📢  | 🗧 Analisis Jalur.splsm = |                   |         |           |        | 6          |
| ~ 🗆 A   | nalisis Jalur<br>Analisis Jalur<br>DataAnalisisJalur (200 record | ds]          |                      |                          |                   |         |           | Grid   | +D<br>Snap |
| A       | rchive                                                           |              |                      |                          |                   |         |           | More T | hemes      |
|         |                                                                  |              |                      |                          |                   |         |           |        |            |
|         |                                                                  |              |                      |                          |                   |         |           | Font   | Size       |
|         |                                                                  |              |                      |                          |                   |         |           | -1     | +1         |
| 🕥 Ind   | cators                                                           | 777          |                      |                          |                   |         |           | Bold   | Italic     |
| No.     | Indicator                                                        |              |                      |                          |                   |         |           | Borde  | er Size    |
| 1       | x1                                                               |              |                      |                          |                   |         |           | -1     | +1         |
| 2       | x2<br>v1                                                         |              |                      |                          |                   |         |           | Ali    | gn         |
| 4       | y2                                                               |              |                      |                          |                   |         |           | 08 Ö   | 08         |
|         |                                                                  |              |                      |                          |                   |         |           | 1      | Щ Ш        |
|         |                                                                  |              |                      |                          |                   |         |           | 6) P   |            |
|         |                                                                  |              |                      |                          |                   |         |           |        |            |
|         |                                                                  |              |                      |                          |                   |         |           |        |            |
|         |                                                                  |              |                      |                          |                   |         |           |        |            |

Untuk mulai menggambar model lakukan dengan cara klik (jangan dilepas) masingmasing variabel indikator yang ada di kotak sebelah kiri bawah lalu drag ke kotak sebelah kanan. Lakukan satu per satu dan atur sehingga terlihat seperti gambar di bawah:



Atur penempatan variabel indikatornya agar tampilannya menjadi lebih menarik dengan cara klik kanan pada lingkaran variabel laten lalu pilih yang sesuai.

÷

Buat pola hubungan antar variabelnya dengan cara klik tombol <sup>Connect</sup> atau klik menu *Edit → Add Connection(s)...* lalu klik Variabel Laten awal dan klik variabel laten tujuan. `Klik lagi variabel laten awal dan klik variabel laten tujuan, begitu seterusnya sampai semua pola hubungan yang dikehendaki terpenuhi.

Jangan lupa mengubah nama variabel laten dengan cara klik kanan variabel laten yang akan diubah namanya lalu pilih *Rename.* Jika semua sudah dilakukan gambar akan berubah menjadi seperti berikut:



Jangan lupa simpan hasil pekerjaan dengan cara klik menu *File → Save* 

#### • Analisis PLS Algorithm

 Lakukan analisis dengan cara klik menu Calculate → PLS Algorithm. Maka akan muncul konfirmasi Maksimum Literasi sebagai berikut:



Biarkan sesuai default dan klik tombol *Start Calculation*, maka akan muncul hasil berikut:

| File Edit                           | View T                                     | hemes C     | alculate  | Info La    | nguage |                                                                                                            |                                                                                 |                                                                           |                                           |                                                                                                         |                    |                |          |
|-------------------------------------|--------------------------------------------|-------------|-----------|------------|--------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------|----------------|----------|
| Save                                | e Ne                                       | w Project   | Ne        | Rew Path M | odel H | 0110<br>3012<br>lide Zero Values                                                                           | Incre                                                                           | ← 0,0<br>0,00<br>ease Decimals                                            | a,a<br>⇒a,a<br>Decrease Decimals          | Export to Excel                                                                                         | Export to Web      | R<br>Export to | o R      |
| Projec                              | ct Explorer                                |             |           |            |        | DataAnalisis                                                                                               | Jalur.txt 🭕                                                                     | Analisis Jalur.splsm                                                      | PLS Algorithm (Run N                      | lo. 1) =                                                                                                |                    |                |          |
| - 🗖 Ana                             | alisis Jalur<br>Apalisis Jalu              |             |           |            |        | Path Coeffic                                                                                               | ients                                                                           |                                                                           |                                           |                                                                                                         |                    |                |          |
|                                     | DataAnalis<br>bive                         | isJalur (20 | 00 record | s]         |        | 🔲 Matrix 🚦                                                                                                 | Path Coeff                                                                      | licients                                                                  |                                           |                                                                                                         | Copy to Clipboard: | Excel Format   | R Format |
| Arc                                 | nive                                       |             |           |            |        | Kelu                                                                                                       | ar Minat                                                                        | Persepsi Teman                                                            |                                           |                                                                                                         |                    |                |          |
|                                     |                                            |             |           |            |        | Minat                                                                                                      | 0.201                                                                           | 0.105                                                                     |                                           |                                                                                                         |                    |                |          |
|                                     |                                            |             |           |            |        | Persepsi                                                                                                   | 0.559                                                                           |                                                                           |                                           |                                                                                                         |                    |                |          |
|                                     |                                            |             |           |            |        | Teman                                                                                                      | 0.096                                                                           | 0.442                                                                     |                                           |                                                                                                         |                    |                |          |
|                                     |                                            |             |           |            |        |                                                                                                            | 0.050                                                                           | 0.442                                                                     |                                           |                                                                                                         |                    |                |          |
| D Indica                            | ators                                      |             |           |            | 777    |                                                                                                            | 0.050                                                                           | 0.442                                                                     |                                           |                                                                                                         |                    |                |          |
| Dindica                             | ators                                      |             |           |            | 777    |                                                                                                            | 0.050                                                                           | 0.442                                                                     |                                           |                                                                                                         |                    |                |          |
| Dindica                             | ators<br>Indicator<br><b>x1</b>            |             |           |            | 777    |                                                                                                            | 0.030                                                                           | 0.442                                                                     |                                           |                                                                                                         |                    |                |          |
| Dindica<br>No.<br>1                 | ators<br>Indicator<br>x1<br>x2             |             |           |            | 777    |                                                                                                            | 0.030                                                                           | 0.442                                                                     |                                           |                                                                                                         |                    |                |          |
| D Indica<br>No.<br>1<br>2<br>3      | ators<br>Indicator<br>x1<br>x2<br>y1       |             |           |            | 7 7 7  |                                                                                                            | 0.030                                                                           | 0.442                                                                     |                                           |                                                                                                         |                    |                |          |
| Indica No.                          | ators<br>Indicator<br>x1<br>x2<br>y1<br>y2 |             |           |            | YYY    | Final Results                                                                                              | Quality Q                                                                       | Criteria                                                                  | Interim Results                           | Base Data                                                                                               |                    |                |          |
| Indica<br>No.<br>1<br>2<br>3        | Indicator<br>x1<br>x2<br>y1<br>y2          |             |           |            | YYY    | Final Results<br>Path Coefficien                                                                           | Quality C                                                                       | Criteria                                                                  | Interim Results<br>Stop Criterion Changes | Base Data<br>Setting                                                                                    |                    |                |          |
| D Indica<br>lo.                     | ators<br>Indicator<br>x1<br>x2<br>y1<br>y2 |             |           |            | YYY    | Final Results<br>Path Coefficien<br>Indirect Effects                                                       | Quality (<br>s R Square<br>f Square                                             | Criteria                                                                  | Interim Results<br>Stop Criterion Changes | Base Data<br>Setting<br>Inner Model                                                                     |                    |                |          |
| No.<br>1<br>2<br>3                  | ators<br>Indicator<br>x1<br>x2<br>y1<br>y2 |             |           |            | XXX    | Final Results<br>Path Coefficien<br>Indirect Effects<br>Total Effects                                      | Quality (<br>s R Square<br>Construct.                                           | Criteria<br>Reliability and Validity                                      | Interim Results<br>Stop Criterion Changes | Base Data<br>Setting<br>Inner Model<br>Outer Model                                                      |                    |                |          |
| Indica<br>No.<br>1<br>2<br>3<br>4   | ators<br>Indicator<br>x1<br>x2<br>y1<br>y2 |             |           |            | 222    | Final Results<br>Path Coefficien<br>Indirect Effects<br>Outer Loadingto                                    | Quality (<br>s R.Square<br>E.Square<br>Construct.<br>Discrimina                 | Criteria<br>Reliability and Validity<br>Int Validity                      | Interim Results<br>Stop Criterion Changes | Base Data<br>Setting<br>Inner Model<br>Outer Model<br>Indicator Data (Origina<br>Endicator Data (Shanda | 10<br>advanti      |                |          |
| D Indica<br>No.<br>1<br>2<br>3<br>4 | ators<br>Indicator<br>x1<br>x2<br>y1<br>y2 |             |           |            | YYY    | Final Results<br>Path Coefficien<br>Indirect Effects<br>Outer Loadings<br>Outer Veights<br>Latent Verights | Quality (<br>s R.Square<br>Construct.<br>Discrimina<br>Collinearit<br>Model Fie | Criteria<br>Reliability and Validity<br>nt Validity<br>y Statistics (VIP) | Interim Results<br>Stop Criterion Changes | Base Data<br>Setting<br>Inner Model<br>Outer Model<br>Indicator Data (Origina<br>Indicator Data (Comple | al)<br>rdized)     |                |          |

Bagian kotak sebelah kanan bawah adalah jenis analisis yang dihasilkan. Jika diklik akan ditampilkan di kotak atasnya. Silakan cek satu per satu mulai dari *Path Coefficients* sampai dengan *Indicator Data (Correlation)* 

Hal yang perlu dicermati di sini sebenarnya adalah melakukan pengujian outer model dan goodness of fit, namun berhubung semua variabel laten hanya diukur oleh satu variabel indikator atau observed variable maka pengujian outer model dan goodness of fit tidak perlu dilakukan karena hasilnya pasti fit. Oleh karena itu pengujian dilakukan tahap berikutnya yakni pengujian inner model.

#### • Analisis Bootstrapping

Pengujian inner model dilakukan dengan cara aktifkan tabulator **.splsm** lalu klik menu *Calculate → Bootstrapping* sehingga akan muncul gambar berikut:

| Setup 🙃 Partial Least 1                    | iquares 🚹 Weighting                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Basic Settings                             |                                                                                                   | Basic Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ubsamples                                  | 500 :                                                                                             | Subsamples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Do Parallel Processing<br>mount of Results | Basic Bootstrapping     Complete Bootstrapping                                                    | In bootstrapping, subsamples are created with observations randomly drawn (with replacement) from the original<br>set of data. To ensure tability of results, the number of automatives is should be large. For an initial assessment,<br>one may use a smaller number of bootstrap subsamples (e.g., 500). For the final results preparation, however,<br>Mode: Larent runberg of bootstrap subsamples increase the composition time or comparation of the original<br>bootstrapping of bootstrap subsamples increase the composition time.                                                          |
| Advanced Settings                          |                                                                                                   | Do Barallel Processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| onfidence Interval Method                  | Percentile Bootstrap     Studentized Bootstrap     Biss-Corrected and Accelerated (BCa) Bootstrap | This option runs the bootstrapping routine on multiple processors (if your computer device offers more than one<br>core). Using parallel computing will reduce computation time.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ut Tuna                                    | One Tailed O Two Tailed                                                                           | Amount of Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ignificance Level                          | 0.05                                                                                              | (1) Basic Bootstrapping (idMaxit)<br>Only a basic set of results for tootstrapping is assembled. This includes: Path Coefficients, Indirect<br>Effects, Total Effects, Outer Loadings, and Outer Weights. This option is much faster if a large number of<br>resamples is dram and useful or perliminary data analysis.                                                                                                                                                                                                                                                                               |
|                                            |                                                                                                   | (2) Complete Bootstrapping<br>All available results for bootstrapping are assembled. For example, this includes: Plath Coefficients,<br>All available results for bootstrapping, Coefer Heights, 6 Source, Average Valance Extructed<br>(AVE). Composer Bellahibly, Concentration & Apha, and Heights, 6 Source, Average Valance Extructed<br>Solide: Solide plathable, Concentration & Apha, and Heights, 6 Source, Average Valance Extructed<br>compute the results. Also, this door media more computer memory (how to assign more memory to<br>SmartPLS, see the <u>EAO on www.smartpls.com</u> ) |
|                                            |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Biarkan secara default lalu klik tombol *Start Calculation* sehingga akan muncul gambar berikut:

| Sa          | ve New Project                              | Rew Path Model | 3012<br>Hide Zero Values                                                                                       | €0,0<br>0,00<br>Increase Decimals                                             | 0,00<br>◆0,0<br>Decrease Decimals                                                         | Export to Excel     | I         | Export to Web   | R<br>Export to | o R         |
|-------------|---------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------|-----------|-----------------|----------------|-------------|
| Proj        | ect Explorer                                | C 8 😭          | DataAnalisisJalur.tx                                                                                           | t 🍕 Analisis Jalur.splsm                                                      | PLS Algorithm (Ru                                                                         | Bootstrapping (     | Ru 🥅 I    | PLS Algorithm ( | Ru 🔝 Bootsti   | rapping (Ru |
| - 🗆 A       | nalisis Jalur                               |                | Path Coefficients                                                                                              |                                                                               |                                                                                           |                     |           |                 |                |             |
|             | Analisis Jalur<br>DataAnalisisJalur (200 r  | records]       | Mean, STDEV, T-V                                                                                               | /alue 🔲 Confidence Int                                                        | ervals 🔲 Confidence In                                                                    | ntervals 🔟 Samp     | ples Copy | y to Clipboard: | Excel Format   | R Format    |
|             |                                             |                |                                                                                                                | Original Sample (O)                                                           | Sample Mean (M) Standa                                                                    | ard Deviation _ T S | tatistics | P Values        |                |             |
|             |                                             |                | Keluarga -> Minat                                                                                              | 0.281                                                                         | 0.282                                                                                     | 0.059               | 4.742     | 0.000           |                |             |
|             |                                             |                | Keluarga -> Persepsi                                                                                           | 0.105                                                                         | 0.105                                                                                     | 0.080               | 1.318     | 0.188           |                |             |
|             |                                             |                | Persepsi -> Minat                                                                                              | 0.559                                                                         | 0.554                                                                                     | 0.050               | 11.168    | 0.000           |                |             |
|             |                                             |                | Teman -> Minat                                                                                                 | 0.096                                                                         | 0.101                                                                                     | 0.062               | 1.548     | 0.122           |                |             |
|             |                                             |                | Teman -> Persepsi                                                                                              | 0.442                                                                         | 0.448                                                                                     | 0.074               | 5.942     | 0.000           |                |             |
| 10          |                                             |                | Teman -> Persepsi                                                                                              | 0.442                                                                         | 0.448                                                                                     | 0.074               | 5.942     | 0.000           |                |             |
| Indi        | cators                                      | XXX            | Teman -> Persepsi                                                                                              | 0.442                                                                         | 0.448                                                                                     | 0.074               | 5.942     | 0.000           |                |             |
| ) Indi      | cators<br>Indicator                         | YYY            | Teman -> Persepsi                                                                                              | 0.442                                                                         | 0.448                                                                                     | 0.074               | 5.942     | 0.000           |                |             |
| D Indi      | cators<br>Indicator<br>x1                   | YYY            | Teman -> Persepsi                                                                                              | 0.442                                                                         | 0.448                                                                                     | 0.074               | 5.942     | 0.000           |                |             |
| Indi<br>No. | cators<br>Indicator<br>x1<br>x2             | YYY            | Teman -> Persepsi                                                                                              | 0.442                                                                         | 0.448                                                                                     | 0.074               | 5.942     | 0.000           |                |             |
| ) Indi      | cators<br>Indicator<br>x1<br>x2<br>y1       | 777            | Teman -> Persepsi                                                                                              | 0.442                                                                         | 0.448                                                                                     | 0.074               | 5.942     | 0.000           |                |             |
| ) Indi      | cators<br>Indicator<br>x1<br>x2<br>y1<br>y2 | YYY            | Teman -> Persepsi                                                                                              | 0.442<br>Histograms                                                           | 0.448<br>Base Data                                                                        | 0.074               | 5.942     | 0.000           |                |             |
| ) Indi      | cators<br>Indicator<br>X1<br>X2<br>y1<br>y2 | TTT            | Teman -> Persepsi<br>Einel Resulte<br>Path Coefficients                                                        | 0.442<br>Histograms<br>Path Coefficients Histogr                              | 0.448<br>Base Data<br>ram Setting                                                         | 0.074               | 5.942     | 0.000           |                |             |
| ) Indi      | Indicator<br>x1<br>x2<br>y1<br>y2           | 222            | Teman -> Persepsi<br>Energy Results<br>Path Coefficients<br>Total manual Hiteds                                | 0.442<br>Histograms<br>Path Coefficients Histogra                             | 0.448<br>Base Data<br>ram Setting<br>m Inner Model                                        | 0.074               | 5.942     | 0.000           |                |             |
| ) Indi      | cators<br>Indicator<br>x1<br>x2<br>y1<br>y2 | YYY            | Teman -> Persepsi<br>Einal-Results<br>Path Coefficients<br>Iotal Indirect Effects<br>Specific Indirect Effects | 0.442<br>Histograms<br>Path Coefficients Histogram<br>Total Effects Histogram | 0.448<br>Base Data<br>am Setting<br>inner Model<br>Outer Model<br>Deterstore Data (Minici | 0.074               | 5.942     | 0.000           |                |             |

Hasil tersebut di atas mencerminkan *Path Coefficients* yang merupakan hasil pengujian pengaruh langsung (direct effect) sehingga dapat disimpulkan sebagai berikut:

- Keluarga berpengaruh positif terhadap minat dengan t statistik 4,742 (p < 0,001)
- Keluarga tidak berpengaruh pada persepsi dengan t statistik 1,318 (p = 0,186)
- Persepsi berpengaruh positif terhadap minat dengan t statistik 11,168 (p < 0,001)
- Teman tidak berpengaruh terhadap minat dengan t statistik 1,548 (p = 0,122)
- Teman berpengaruh positif terhadap persepsi dengan t statistik 5,942 (p < 0,001)

Untuk melihat pengaruh tidak langsung (indirect effects) dapat diklik *Total Indirect Effects* sehingga akan muncul gambar berikut:

| Sav             | a 🗌                                        | Project      | Rew Path M | Model H | ao110<br>3012<br>tide Zero Values                                                                        | €0.0<br>0.00<br>Increase Decimals                                     | 0,00<br>◆0,0<br>Decrease Decimals                                               | Export to Ex    | cel        | Export to Web    | R<br>Export t | o R           |
|-----------------|--------------------------------------------|--------------|------------|---------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------|------------|------------------|---------------|---------------|
| Proje           | ct Explorer                                |              |            |         | DataAnalisisJalur.b                                                                                      | t 🥰 "Analisis Jalur.spl                                               | PLS Algorithm (Ru_                                                              | Bootstrappin    | g (Ru =    | PLS Algorithm    | m (Ru 🛅 Boot  | strapping (Ru |
| Ani             | alisis Jalur                               |              |            |         | Total Indirect Effe                                                                                      | cts                                                                   |                                                                                 |                 |            |                  |               |               |
|                 | Analisis Jalur<br>DataAnalisisJa           | alur (200 re | ecords]    |         | Mean, STDEV, T-1                                                                                         | /alue_ 🔟 Confidence Inte                                              | rvals 📃 Confidence li                                                           | ntervals 🔟 Sa   | mples Co   | py to Clipboard: | Excel Format  | R Format      |
| Pile            |                                            |              |            |         |                                                                                                          | Original Sample (O) Si                                                | ample Mean (M) Standa                                                           | ard Deviation T | Statistics | P Values         |               |               |
|                 |                                            |              |            |         | Keluarga -> Minat                                                                                        | 0.059                                                                 | 0.055                                                                           | 0.048           | 1.227      | 0.220            |               |               |
|                 |                                            |              |            |         | Keluarga -> Persepsi                                                                                     |                                                                       |                                                                                 |                 |            |                  |               |               |
|                 |                                            |              |            |         | Persepsi -> Minat                                                                                        |                                                                       |                                                                                 |                 |            |                  |               |               |
|                 |                                            |              |            |         | Teman -> Minat                                                                                           | 0.247                                                                 | 0.249                                                                           | 0.047           | 5.254      | 0.000            |               |               |
|                 |                                            |              |            |         | Teman -> Persepsi                                                                                        |                                                                       |                                                                                 |                 |            |                  |               |               |
| Indica          | ators                                      |              |            | ***     | Teman -> Persepsi                                                                                        |                                                                       |                                                                                 |                 |            |                  |               |               |
| ) Indice        | ators                                      |              |            | XXX     | Teman -> Persepsi                                                                                        |                                                                       |                                                                                 |                 |            |                  |               |               |
| ) Indice        | ators<br>Indicator                         |              |            | YYY     | Teman -> Persepsi                                                                                        |                                                                       |                                                                                 |                 |            |                  |               |               |
| Dindica         | Indicator<br>x1<br>x2                      |              |            | YYY     | Teman -> Persepsi                                                                                        |                                                                       |                                                                                 |                 |            |                  |               |               |
| ) Indica<br>Io. | ators<br>Indicator<br>x1<br>x2<br>y1       |              |            | YYY     | Teman -> Persepsi                                                                                        |                                                                       |                                                                                 |                 |            |                  |               |               |
| ) Indica<br>Io. | ators<br>Indicator<br>x1<br>x2<br>y1<br>y2 |              |            | YYY     | Teman -> Persepsi                                                                                        | Vistosome                                                             | Race Data                                                                       |                 |            |                  |               |               |
| ) Indica<br>lo. | ators<br>Indicator<br>x1<br>x2<br>y1<br>y2 |              |            | YYY     | Teman -> Persepsi                                                                                        | Histograms<br>Dath Coefficients Histopre                              | Base Data                                                                       |                 |            |                  |               |               |
| ) Indica<br>Io. | Indicator<br>x1<br>x2<br>y1<br>y2          |              |            | XXX     | Teman -> Persepsi                                                                                        | Histograms<br>Path.Coefficients.Histogram<br>Prect Effect.Histogram   | Base Data<br>m Setting<br>Inner Model                                           |                 |            |                  |               |               |
| ) Indica<br>Io. | Indicator<br>x1<br>x2<br>y1<br>y2          |              |            | XXX     | Final Results Path Configuration Total Indirect Effects Specific August Configuration                    | Histograms<br>Path Coefficients Histogra<br>Detect Effects Histogram  | Base Data<br>m Setting<br>Inner Model<br>Outer Model                            |                 |            |                  |               |               |
| ) Indica        | ators<br>Indicator<br>x1<br>x2<br>y1<br>y2 |              |            | YYY     | Teman -> Persepsi<br>Final Results<br>Put Confidence<br>Total Indirect Effects<br>Total Indirect Effects | Histograms<br>Path. Coefficients Histogram<br>Total Effects Histogram | Base Data<br>m Setting<br>Inner Model<br>Quter Model<br>Indicator Data. (Origin | nal)            |            |                  |               |               |

Berdasarkan gambar tersebut dapat disimpulkan bahwa:

- Keluarga tidak memiliki pengaruh tidak langsung terhadap minat dengan t statistik 1,227 (p=0,220)
- Teman memiliki pengaruh tidak langsung terhadap minat dengan t statistik 5,254 (p<0,001)



Berikut gambar hasil analisis selengkapnya:

# Bagian 2. Confirmatory Factor Analysis (CFA)

# Tujuan

Untuk menguji tingkat validitas konstruk seperangkat instrumen, kuesioner atau angket

## **Contoh Masalah**

Apakah butir-butir yang dikembangkan dalam mengukur indikator/faktor yang dikembangkan untuk mengukur minat belajar?

Berikut ini disajikan data tentang butir minat belajar seperti yang terdapat dalam File *DataCFA.xls* 

Dalam file tersebut terdapat 20 butir pertanyaan yang digunakan untuk mengukur minat belajar yang terbagi ke dalam 3 konstruk sebagai berikut:

- 1. Perasaan senang terdiri atas 6 butir (butir no 1 s.d. 6)
- 2. Ketertarikan terdiri atas 8 butir (butir no 7 s.d. 14)
- 3. Perhatian terdiri atas 6 butir (butir no 15 s.d. 20)

Ujilah apakah butir-butir yang dikembangkan untuk mengukur minat belajar tersebut valid dalam mengukur konstruk!

# Langkah-langkah analisis

- Persiapan
- 1. Menyiapkan Data

Siapkan data yang akan dianalisis dalam format basis data yang dapat dibuat dengan program Microsoft Excel. Dalam latihan ini sudah disiapkan data dalam format Excel yang disimpan dalam file *DataCFA.xls.* Berikut format entry datanya:

| Auto: | Save 💽 🔛 📙          | 1 × (° -   | _[8] ⇒           | DataCF/    | Axis - Compi | atibility Mode • : | Saved 🔹  | s کر        | earch (Alt+Q) |            | _      | _                       |               |        |             | 1.181           |                  | Ali M           | uhson 🎈      |
|-------|---------------------|------------|------------------|------------|--------------|--------------------|----------|-------------|---------------|------------|--------|-------------------------|---------------|--------|-------------|-----------------|------------------|-----------------|--------------|
| File  | Home Ir             | nsert Draw | Page La          | ayout Forr | mulas Da     | ita Review         | View     | Developer   | Help          |            |        |                         |               |        |             |                 |                  |                 |              |
| Paste | X Cut<br>Copy ∽     | Calibri    | v 1<br>II v I⊞ v |            |              | ≝∛∾∽<br>⊐latat     | ~ 怨 Wrap | Text        | General       | × • •      | 2 Cond | itional Form            | at as Cell    | Insert | Delete Form | ∑ Aut<br>⇒ Fill | oSum v 🛔         | ort & Find &    | k Anal       |
| ~     | Server Format Paint | er 了       | Font             | ·   • • •  | ·            | = <u></u><br>Alia  | ment     | oc Center * | 15 N          | /0 / .00 - | Forma  | itting ~ Tabi<br>Styles | le ~ Styles ~ | ·   ·  | čells       | Cle             | ar≚ Fi<br>Editin | iter ~ Select ~ | " Da<br>Anal |
| /25   |                     | XVI        | ſx               |            |              |                    |          |             |               |            |        |                         |               |        |             |                 |                  |                 |              |
| 4     | A B                 | с          | D                | E          | F            | G                  | н ј і    | J           | к             | ι          | м      | N                       | 0             | P      | Q           | R               | s                | т               |              |
| ь0:   | 1 602               | b03        | b04              | b05 b      | b06 b0       | 07 b08             | b09      | b10         | b11           | b12        | b13    | b14                     | b15           | b16    | b17         | b18             | b19              | b20             |              |
| -     | 4                   | 3          | 3 3              | 3 4        | 4            | 2                  | 1        | 1           | 1             | 1          | 2      | 2                       | 2             | 2      | 1           | 1               | 1                | 2               | 2 📑          |
|       | 1                   | 2          | 3 3              | 5 3        | 4            | 5                  | 4        | 5           | 2             | 4          | 5      | 1                       | 1             | 1      | 3           | 2               | 4                | 3               | 5            |
|       | 3                   | 4          | 2 4              | 2 5        | 5            | 1                  | 5        | 2           | 2             | 3          | 4      | 1                       | 1             | 1      | 3           | 5               | 1                | 3               | 5            |
|       | 5                   | 5          | 5 5              | 5 4        | 5            | 4                  | 3        | 2           | 3             | 4          | 4      | 4                       | 1             | 4      | 4           | 4               | 4                | 5               | 4            |
|       | 4                   | 2          | 1 0              | 5 1        | 4            | 4                  | 1        | 4           | 3             | 2          | 5      | 3                       | 5             | 4      | 2           | 4               | 1                | 5               | 2            |
|       | 2                   | 1          | 2 1              | 1 2        | 1            | 2                  | 3        | 3           | 2             | 3          | 3      | 3                       | 3             | 5      | 5           | 5               | 5                | 5               | 5            |
|       | 4                   | 4          | 5 4              | 4 5        | 4            | 5                  | 5        | 5           | 5             | 5          | 5      | 5                       | 5             | 5      | 4           | 5               | 5                | 4               | 4            |
| 0     | 3                   | 1          | 2 1              | 1 1        | 5            | 2                  | 2        | 5           | 3             | 4          | 4      | 1                       | 3             | 4      | 1           | 1               | 4                | 2               | 5            |
| 1     | 4                   | 4          | 4 4              | 4 4        | 4            | 2                  | 2        | 1           | 2             | 2          | 2      | 2                       | 1             | 5      | 5           | 5               | 5                | 5               | 5            |
| 2     | 2                   | 2          | 2 1              | 1 2        | 2            | 2                  | 1        | 2           | 1             | 2          | 1      | 2                       | 2             | 4      | 3           | 3               | 4                | 3               | 4            |
| 3     | 5                   | 1          | 2 3              | 3 5        | 4            | 4                  | 3        | 4           | 5             | 3          | 3      | 2                       | 3             | 1      | 1           | 1               | 5                | 5               | 1            |
| 4     | 2                   | 5          | 1 3              | 3 2        | 1            | 1                  | 2        | 1           | 5             | 2          | 1      | 3                       | 1             | 2      | 1           | 2               | 2                | 5               | 3            |
| 5     | 3                   | 5          | 2 3              | 3 2        | 3            | 5                  | 1        | 5           | 2             | 1          | 5      | 5                       | 2             | 4      | 4           | 4               | 2                | 4               | 3            |
| 6     | 2                   | 1          | 1 1              | 1 2        | 1            | 4                  | 3        | 4           | 3             | 4          | 3      | 3                       | 4             | 5      | 5           | 5               | 5                | 5               | 5            |
| 7     | 2                   | 1          | 1 1              | 1 2        | 1            | 3                  | 2        | 2           | 3             | 3          | 2      | 3                       | 3             | 2      | 2           | 1               | 2                | 2               | 1            |

Data di atas harus di save as ke dalam format CSV dengan cara: klik *File → Save As → pilih file type CSV (Comma delimited) → Save* (Perhatikan lokasi dan folder perekamannya)

| DataAnalisisTalur                       |  |
|-----------------------------------------|--|
| Excel 97-2003 Workbook (*.xls)          |  |
| Excel Workbook (*.xlsx)                 |  |
| Excel Macro-Enabled Workbook (*.xlsm)   |  |
| Excel Binary Workbook (*.xlsb)          |  |
| Excel 97-2003 Workbook (*.xls)          |  |
| CSV UTF-8 (Comma delimited) (*.csv)     |  |
| XML Data (*.xml)                        |  |
| Single File Web Page (*.mht, *.mhtml)   |  |
| Web Page (*.htm, *.html)                |  |
| Excel Template (*.xltx)                 |  |
| Excel Macro-Enabled Template (*.xltm)   |  |
| Excel 97-2003 Template (*.xlt)          |  |
| Text (Tab delimited) (*.txt)            |  |
| Unicode Text (*.txt)                    |  |
| XML Spreadsheet 2003 (*.xml)            |  |
| Microsoft Excel 5.0/95 Workbook (*.xls) |  |
| CSV (Comma delimited) (*.csv)           |  |
| Formatted Text (Space delimited) (*.pm) |  |
| Text (Macintosh) (*.txt)                |  |
| Text (MS-DOS) (*.txt)                   |  |
| CSV (Macintosh) (*.csv)                 |  |
| CSV (MS-DOS) (*.csv)                    |  |
| DIF (Data Interchange Format) (*.dif)   |  |
| SYLK (Symbolic Link) (*.slk)            |  |
| Excel Add-in (*.xlam)                   |  |
| Excel 97-2003 Add-in (*.xla)            |  |
| PDF (*.pdf)                             |  |

2. Jalankan program SmartPLS sehingga muncul gambar berikut:

| Save New Project New Path Model  Project Explorer  P Archive | Indicators     Image: Second Sec | Indicators     Image: Second Sec | see New Project New Path Model  Project Support  PtS  Archive  Indicators  T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SmartPLS: D:\@MyData\Proje | rct\institusional 2021 |  | - |  |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|--|---|--|
| Project Eplorer                                              | Project Explore         > PLS         Archive         Indicators         Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Project Eplorer       Indicators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Indicators       Image: Comparison of the second seco | Save New Project           | New Path Model         |  |   |  |
|                                                              | D Indicators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Indicators 😨 🗑 🛣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Indicators 🛛 🕱 🛣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Project Explorer           |                        |  |   |  |
|                                                              | on ZZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or. YY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or. XXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |  |   |  |

3. Tentukan lokasi project yakni drive dan folder yang akan digunakan sebagai lokasi penyimpanan dengan cara: Klik *File → Switch Workspace* lalu pilih atau buat folder sesuai yang diinginkan, misalnya Latihan (Jika sudah ada tidak perlu membuat lagi).

#### • Memulai Project

 Membuat project baru dengan cara Klik File → Create New Project untuk memulai pengolahan data dengan Smart PLS. Buatlah nama project tersebut. Dalam contoh ini menggunakan "Analisis CFA". Kemudian klik Ok  Mengimport data dari CSV ke SmartPLS dengan cara Klik File → Import Data File. Lalu pilih lokasi atau folder penyimpanan data CSV yang sudah disiapkan sebelumnya. Klik file DataCFA.csv lalu klik OK sehingga akan muncul gambar berikut:

| Save New Project New Path M                                                                | lodel Ac | d Data Group                                     |                | Genera                      | e Data (               | Groups                  | Clev   | ar Data Gr                         | oups                                |                   |        |            |                   |
|--------------------------------------------------------------------------------------------|----------|--------------------------------------------------|----------------|-----------------------------|------------------------|-------------------------|--------|------------------------------------|-------------------------------------|-------------------|--------|------------|-------------------|
| Project Explorer                                                                           | 0 🗆 😭    | DataCFA                                          | txt =          |                             |                        |                         |        |                                    |                                     |                   |        |            |                   |
| Analisis CFA<br>Analisis CFA<br>DataCFA [300 r.v. rds]<br>Analisis Jalur<br>Analisis Jalur |          | Delimiter:<br>Value Quo<br>Number F<br>Missing V | ote Ch<br>orma | haracter:<br>It:<br>Marker: | Comn<br>None<br>US (ex | <u>na</u><br>(ample: 1, | 000.23 | Encod<br>Sampl<br>Indica<br>Missin | ing:<br>e size:<br>tors:<br>o Value | UTF-<br>300<br>20 | -8     | Re-Analyze | Open External     |
| DataAnalisisJalur (200 records)                                                            |          | Indicators:                                      | Indi           | ator Corre                  | lations                | Raw File                |        |                                    |                                     |                   |        |            | Copy to Clipboard |
|                                                                                            |          | b01                                              | No.            | Missing                     | Mean<br>3 183          | Median<br>3.000         | Min    | Max 5                              | Standa                              | Excess            | Skewn  |            |                   |
|                                                                                            |          | bol                                              | 2              | 0                           | 3.113                  | 3.000                   | 1.000  | 5.000                              | 1.410                               | -1.290            | -0.087 |            |                   |
|                                                                                            |          | b03                                              | 3              | 0                           | 3.110                  | 3.000                   | 1.000  | 5.000                              | 1.423                               | -1.358            | -0.042 |            |                   |
|                                                                                            |          | b04                                              | 4              | 0                           | 3.050                  | 3.000                   | 1.000  | 5.000                              | 1.376                               | -1.225            | -0.044 |            |                   |
|                                                                                            |          | b05                                              | 5              | 0                           | 3.183                  | 3.000                   | 1.000  | 5.000                              | 1.425                               | -1.301            | -0.167 |            |                   |
| ] Indicators                                                                               | XXX      | b06                                              | 6              | 0                           | 3.190                  | 3.000                   | 1.000  | 5.000                              | 1.354                               | -1.191            | -0.155 |            |                   |
| No indicators to show                                                                      |          | b07                                              | 7              | 0                           | 3., 18                 | 3.000                   | 1.000  | 5.000                              | 1.344                               | -1.193            | -0.044 |            |                   |
| No indicators to show.                                                                     |          | b08                                              | 8              | 0                           | 3.157                  | 1,000                   | 1.000  | 5.000                              | 1.334                               | -1.174            | -0.078 |            |                   |
|                                                                                            |          | b09                                              | 9              | 0                           | 3.120                  | 3.000                   | 1.000  | 5.000                              | 1.351                               | -1.191            | -0.089 |            |                   |
|                                                                                            |          | b10                                              | 10             | 0                           | 3.167                  | 3.000                   | 7. 90  | 5.000                              | 1.341                               | -1.165            | -0.082 |            |                   |
|                                                                                            |          | b11                                              | 11             | 0                           | 3.133                  | 3.000                   | 1.000  | 5,000                              | 1.342                               | -1.221            | -0.087 |            |                   |
|                                                                                            |          | b12                                              | 12             | 0                           | 3.177                  | 3.000                   | 1.000  | 5.00                               | 1.380                               | -1.177            | -0.236 |            |                   |
|                                                                                            |          | b13                                              | 13             | 0                           | 3.110                  | 3.000                   | 1.000  | 5.000                              | 1.148                               | -1.150            | -0.087 |            |                   |
|                                                                                            |          | b14                                              | 14             | 0                           | 3.153                  | 3.000                   | 1.000  | 5.000                              | 1.387                               | 1,189             | -0.187 |            |                   |
|                                                                                            |          | b15                                              | 15             | 0                           | 3.133                  | 3.000                   | 1.000  | 5.000                              | 1.350                               | -1.15.            | -0.130 |            |                   |
|                                                                                            |          | b16                                              | 16             | 0                           | 3.197                  | 3.000                   | 1.000  | 5.000                              | 1.395                               | -1.238            | -0 -14 |            |                   |
|                                                                                            |          | b17                                              | 17             | 0                           | 3.250                  | 3.000                   | 1.000  | 5.000                              | 1.357                               | -1.189            | -0.196 |            |                   |
|                                                                                            |          | b18                                              | 18             | 0                           | 3.153                  | 3.000                   | 1.000  | 5.000                              | 1.365                               | -1.196            | -0.153 |            |                   |

3. Menggambar model dengan cara double klik di gambar berikut: 🔀 Analisis CFA sehingga akan muncul gambar berikut:

| ile Edi | t View Themes Calculate                                 | Info Language |                 |                              |                          |         |           |             |
|---------|---------------------------------------------------------|---------------|-----------------|------------------------------|--------------------------|---------|-----------|-------------|
| Ŧ       | ⊒ ♣ ≶ ऌ ⊖ ् €                                           | Select L      | atent Variable. | Connect Quadratic            | Effect Moderating Effect | Comment | Calculate |             |
| Proje   | ct Explorer                                             | 8 8 5         | DataCF/         | Att 🚭 Analisis CFA.splsm 🗉 🔵 |                          |         |           |             |
| - C Ar  | alisis CFA<br>, Analisis CFA<br>  DataCFA (300 records) |               |                 |                              |                          |         |           | Grid Sn     |
| r 🗖 Ar  | alisis Jalur                                            |               |                 |                              |                          |         |           | More Themes |
|         | Analisis Jalur<br>DataAnalisis Jalur (200 recor         | del           |                 |                              |                          |         |           |             |
| Ar      | chive                                                   | ,             |                 |                              |                          |         |           |             |
| Indic   | ators                                                   | 777           | 2               |                              |                          |         |           |             |
| , marc  | Indicator                                               |               |                 |                              |                          |         |           |             |
| ~       | b01                                                     |               | 1               |                              |                          |         |           | Font Size   |
|         | b02                                                     |               |                 |                              |                          |         |           | -1 -        |
|         | b03                                                     |               |                 |                              |                          |         |           | P.14        |
|         | b04                                                     |               |                 |                              |                          |         |           | Bold - /    |
|         | b05                                                     |               |                 |                              |                          |         |           | Border Size |
|         | b06                                                     |               |                 |                              |                          |         |           | -1 -        |
|         | b07                                                     |               |                 |                              |                          |         |           | Align       |
|         | b08                                                     |               |                 |                              |                          |         |           | 10 IO O     |
|         | b09                                                     |               |                 |                              |                          |         |           | 77 E rí     |
|         | b10                                                     |               |                 |                              |                          |         |           |             |
|         | b11                                                     |               |                 |                              |                          |         |           | ¢₩ €1       |
|         | b12                                                     |               |                 |                              |                          |         |           |             |
|         | b13                                                     |               |                 |                              |                          |         |           |             |
|         | b14                                                     |               |                 |                              |                          |         |           |             |
|         |                                                         |               |                 |                              |                          |         |           |             |

Untuk mulai menggambar model lakukan dengan cara memilih beberapa nomor butir yang mengukur satu konstruk, caranya adalah dengan mengklik nomor butir disertai menekan tombol CTRL. Setelah terpilih semua lalu drag ke kotak sebelah kanan. Contohnya: Klik b01 lalu sambil menekan tombol CTRL klik b02, klik b03, dst sampai b06. Setelah itu drag ke kotak sebelah kanan untuk membuat variabel laten pertama (ubah namanya dengan variabel **Senang**). Lakukan juga dengan cara yang sama untuk konstruk kedua (**Tertarik**) dan ketiga (**Perhatian**). Selanjutnya pilih semua b01 sampai dengan b20 lalu drag ke kotak sebelah kanan untuk membuat variabel laten keempat (**Minat**). Tata posisi variabel tersebut sehingga seperti terlihat pada gambar berikut:



Agar tampilan menjadi lebih bagus, variabel observed yang mengukur variabel laten Minat dapat disembunyikan dengan cara klik kanan di variabel laten Minat lalu pilih *Hide Indicator of Selected Construct.* Kemudian buat pola hubungan dengan cara klik menu *Edit* → *Add Connection(s)....* Lalu klik variabel minat trus klik variabel Senang, klik variabel Minat trus klik variabel Tertarik, lalu klik variabel minat dan klik variabel Perhatian, sehingga akan tampil gambar berikut:



Karena warna variabel laten sudah biru, artinya sudah model sudah siap untuk dianalisis. Jangan lupa simpan hasil pekerjaan dengan cara klik menu *File → Save* 

#### • Analisis PLS Algorithm

Lakukan analisis dengan cara klik menu *Calculate → PLS Algorithm*. Maka akan muncul konfirmasi Maksimum Literasi sebagai berikut:

| artial Least Squares<br>he PLS path modeling me<br>btained at convergence sa | Algorithm<br>thod was developed by Wold (1982). In essence, the PLS<br>tisfy fixed point equations (see Dijkstra, 2010, for a generic<br>tisfy fixed point equations (see Dijkstra, 2010, for a generic<br>tisfy fixed point equations (see Dijkstra, 2010, for a generic<br>tisfy fixed point equations (see Dijkstra, 2010, for a generic<br>tisfy fixed point equations (see Dijkstra, 2010, for a generic<br>tisfy fixed point equations (see Dijkstra, 2010, for a generic<br>tisfy fixed point equations (see Dijkstra, 2010, for a generic<br>tisfy fixed point equations (see Dijkstra, 2010, for a generic<br>tisfy fixed point equations (see Dijkstra, 2010, for a generic<br>tisfy fixed point equations (see Dijkstra, 2010, for a generic<br>tisfy fixed point equations (see Dijkstra, 2010, for a generic<br>tisfy fixed point equations (see Dijkstra, 2010, for a generic<br>tisfy fixed point equations (see Dijkstra, 2010, for a generic<br>tisfy fixed point equations (see Dijkstra, 2010, for a generic<br>tisfy fixed point equations (see Dijkstra, 2010, for a generic) (see Dijkstra, 2010, for a | algorithm is a sequence of regressions in terms of weight vectors. The weight vectors<br>analysis of these equations).                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Setup 🏟 Weighting                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Basic Settings                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Basic Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Weighting Scheme                                                             | 🔆 Centroid 🗿 Factor 🔿 Path                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weighting Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Maximum Iterations:                                                          | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLS-SEM allows the user to apply three structural model weighting schemes:                                                                                                                                                                                                                                                                                                                                                                                                                |
| Stop Criterion (10^-X):                                                      | 7 🛟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ol> <li>centroid weighting scheme,</li> <li>factor weighting scheme, and</li> <li>path weighting scheme (default).</li> </ol>                                                                                                                                                                                                                                                                                                                                                            |
| Configure individual initial w                                               | eights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | While the results differ little for the alternative weighting schemes, path weighting is the recommended approach.<br>This weighting scheme provides the highest RV value for endogenous latent vaniables and is generally applicable<br>for all kinds of PLC path model specifications and estimations. Moreover, when the path model includes higher-<br>order constructs (often called second-order models), researchers should usually not use the centroid weighting<br>scheme.      |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maximum Iterations                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | This parameter represents the maximum number of iterations that will be used for calculating the PLS result.<br>This number should be sufficiently large (e.g., 300 iterations). When checking the PLS-SEM result, one must<br>make sure that the algorithm did not stop because the maximum number of iterations was reached but due to the<br>stop criterion. Note: The selection of 0 for the maximum number of iterations allows you to obtain results of the<br>sum scores approach. |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stop Criterion                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The PLS algorithm stops when the change in the outer weights between two consecutive iterations is smaller than<br>this stop criterion value (or the maximum number of flerations is reached). This value should be sufficiently small<br>(e.g. 10-55 or 10-75).                                                                                                                                                                                                                          |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Advanced Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Lakukan perubahan di bagian *Weighting Scheme* ke pilihan *Factor* karena yang akan dianalisis adalah CFA lalu klik tombol *Start Calculation*. Setelah muncul output hasil analisis, di bagian kotak sebelah kanan bawah klik *Model Fit* untuk melihat hasil model fit sebagai berikut:

| le i       | dit View Themes Calcu                | ate Info | Language          |                                                |                           |                         | -               | -                  | -            |          |
|------------|--------------------------------------|----------|-------------------|------------------------------------------------|---------------------------|-------------------------|-----------------|--------------------|--------------|----------|
| 1          | £ _                                  |          | <u>R.</u>         | 0110<br>2012                                   | <b>+</b> 0,0<br>0,00      | 0,00<br><b>→</b> 0,0    | •               | <                  | R            |          |
| -          | Save New Project                     | New Pat  | th Model H        | lide Zero Values                               | ncrease Decimals          | Decrease Decimals       | Export to Excel | Export to Web      | Export t     | o R      |
| Pr         | oject Explorer 🛛 🖺                   |          | DataCFA.txt       | 🗧 Analisis CFA.splsm 📗                         | PLS Algorithm (Run No. 1) |                         |                 |                    |              |          |
|            | Analisis CFA                         |          | Model_Fit         |                                                |                           |                         |                 |                    |              |          |
| _          | DataCFA [300 records] Analisis Jalur |          | Fit Summary       | in rms Theta                                   |                           |                         |                 | Copy to Clipboard: | Excel Format | R Format |
| _          | 🤱 Analisis Jalur                     |          |                   | Saturated Model                                | Estimated Model           |                         |                 |                    |              |          |
| _          | DataAnalisisJalur (200 m             | ecords]  | SRMR              | 0.202                                          | 0.207                     |                         |                 |                    |              |          |
| A          | Archive                              |          | d_ULS             | 33.409                                         | 35.251                    |                         |                 |                    |              |          |
| ) In       | dicators 🖀                           | YY       | d_G               | n/a                                            | n/a                       |                         |                 |                    |              |          |
| <b>D</b> . | Indicator                            |          | Chi-Square        | infinite                                       | infinite                  |                         |                 |                    |              |          |
|            | b01                                  |          | NFI               | n/a                                            | n/a                       |                         |                 |                    |              |          |
|            | ь02                                  |          |                   |                                                |                           |                         |                 |                    |              |          |
|            | Ь03                                  |          |                   |                                                |                           |                         |                 |                    |              |          |
|            | Ь04                                  |          |                   |                                                |                           |                         |                 |                    |              |          |
|            | b05                                  |          |                   |                                                |                           |                         |                 |                    |              |          |
|            | b06                                  | - 11     |                   |                                                |                           |                         |                 |                    |              |          |
|            | ь07                                  | - 11     |                   |                                                |                           |                         |                 |                    |              |          |
|            | b08                                  | - 11     |                   |                                                |                           |                         |                 |                    |              |          |
|            | 609                                  |          |                   |                                                |                           |                         |                 |                    |              |          |
|            | 610                                  |          | Final Results     | Quality Criteria                               | Interim Results           | Base Data               |                 |                    |              |          |
| 1<br>>     | b11                                  |          | Path Coefficients | R Square                                       | Stop Criterion Chan       | ges Setting             |                 |                    |              |          |
| 2          | b12                                  |          | Indirect Effects  | <u>t Square</u><br>Construct Paliability and V | wiidite                   | Inner Model             |                 |                    |              |          |
| 4          | b14                                  |          | Outer Loadings    | Discriminant Validity                          | under g                   | Indicator Data (Origina | D               |                    |              |          |
| 5          | 615                                  |          | Outer Weights     | Collinearity Statistics (VIF)                  |                           | Indicator Data (Standar | dized)          |                    |              |          |
|            |                                      |          | Latent Viciable   | Model Fit                                      |                           | Indicator Data (Correla | tions)          |                    |              |          |

Hasil di atas menunjukkan bahwa nilai SRMR yang ditemukan sebesar 0,207. Oleh karena nilai tersebut lebih besar dari 0,100 maka model dianggap tidak fit. Namun demikian ukuran model fit dalam SmartPLS tidaklah harus dijadikan sebagai acuan yang harus dipatuhi. Peneliti harus sangat berhati-hati untuk melaporkan dan menggunakan model fit di PLS-SEM (Hair, et al., 2017). Kriteria yang diusulkan masih dalam tahap awal penelitian, tidak sepenuhnya dipahami (misalnya, nilai ambang kritis), dan seringkali tidak berguna untuk PLS-SEM. Selama ini kriteria tersebut biasanya tidak dilaporkan dan digunakan untuk penilaian hasil PLS-SEM.

Hal yang perlu dilihat berikutnya adalah pembuktian validitas dan estimasi reliabilitasnya. Untuk melihat hasilnya silakan klik *Construct Reliability and Validity* sehingga akan muncul gambar berikut:

|            | Save New Project Ne                                                       | R w Path Model  | B110<br>3012<br>Hide Zero Values | Increa      | ●0.0<br>0.00<br>Ise Decimals Dec | 0,00<br>→0,0<br>rease Decimals | Export to Excel    | Export to Web      | R<br>Export to | o R      |
|------------|---------------------------------------------------------------------------|-----------------|----------------------------------|-------------|----------------------------------|--------------------------------|--------------------|--------------------|----------------|----------|
| Pr         | roject Explorer                                                           | DataCFA         | bxt 🥰 Analisis CFA.splsm         | PLS /       | Algorithm (Run No. 1) =          |                                |                    |                    |                |          |
|            | Analisis CFA                                                              | Construct       | Reliability and Valid            | lity        |                                  |                                |                    |                    |                |          |
| _          | Analisis CFA<br>DataCFA (300 records)                                     | Matrix          | Cronbach's Alpha                 | rho_A       | Composite Reliability            | Average Varian                 | ce Extracted (AVE) | Copy to Clipboard: | Excel Format   | R Format |
|            | Analisis Jalur     Analisis Jalur     Data Analisis Jalur     1200 record | d Minut         | Cronbach's Alpha                 | rho_A       | Composite Reliability            | Average Variance Ex            | tracted (AVE)      |                    |                |          |
| 0          | Archive                                                                   | Perhatian       | 0.825                            | 0.826       | 0.873                            |                                | 0.534              |                    |                |          |
|            |                                                                           | Senang          | 0.815                            | 0.606       | 0.807                            |                                | 0.425              |                    |                |          |
| ) In       | dicators 🚠 👗                                                              | Tertarik        | 0.843                            | 0.844       | 0.879                            |                                | 0.476              |                    |                |          |
| <b>)</b> , | Indicator                                                                 |                 | 100000                           |             |                                  |                                |                    |                    |                |          |
|            | b01                                                                       |                 |                                  |             |                                  |                                |                    |                    |                |          |
|            | b02                                                                       |                 |                                  |             |                                  |                                |                    |                    |                |          |
|            | b03                                                                       |                 |                                  |             |                                  |                                |                    |                    |                |          |
|            | b04                                                                       |                 |                                  |             |                                  |                                |                    |                    |                |          |
|            | b05                                                                       |                 |                                  |             |                                  |                                |                    |                    |                |          |
|            | b06                                                                       |                 |                                  |             |                                  |                                |                    |                    |                |          |
|            | b07                                                                       |                 |                                  |             |                                  |                                |                    |                    |                |          |
|            | P08                                                                       |                 |                                  |             |                                  |                                |                    |                    |                |          |
|            | b09                                                                       |                 |                                  |             |                                  |                                |                    |                    |                |          |
| 0          | b10                                                                       | Final Resul     | ts Quality Criteria              |             | Interim Results                  | Base Data                      |                    |                    |                |          |
| 1          | b11                                                                       | Path Coeffici   | ents R.Square                    |             | Stop Criterion Changes           | Setting                        |                    |                    |                |          |
| 2          | b12                                                                       | Indirect Effect | ts f Square                      | _           |                                  | Inner Model                    |                    |                    |                |          |
| 3          | b13                                                                       | Total Effects   | Construct Reliability            | and Validit |                                  | Outer Model                    |                    |                    |                |          |
| 4          | b14                                                                       | Outer Loadin    | gs Disconnent Validity           | Terrar 1    |                                  | Indicator Data (Origin         | al)                |                    |                |          |
|            | h15                                                                       | Outer Weigh     | ts Collinearity Statistics       | E (VIE)     |                                  | Indicator Data (Stand          | irdized]           |                    |                |          |

Hasil diatas menunjukkan bahwa:

- Perhatian memiliki estimasi reliabilitas yang baik karena semua ukuran reliabilitas melebihi 0,7, sementara validitasnya kurang baik karena nilai AVE 0,193 kurang dari 0,5.
- Perasaan Senang memiliki estimasi reliabilitas yang baik karena koefisien Alpha dan Composite Reliability melebihi 0,7, sementara validitasnya kurang baik karena nilai AVE 0,425 kurang dari 0,5.
- Ketertarikan memiliki estimasi reliabilitas yang baik karena semua ukuran reliabilitas melebihi 0,7, sementara validitasnya kurang baik karena nilai AVE 0,476 kurang dari 0,5.

Hal yang lain yang perlu dilihat adalah validitas diskriminant. Untuk melihat hasilnya silakan klik *Discriminant Validity* sehingga akan muncul gambar berikut:

|            | 1                  |             |                   | 0110                 |                |            | 0.0              | 0.00                |                 | •                    |                    |              |          |
|------------|--------------------|-------------|-------------------|----------------------|----------------|------------|------------------|---------------------|-----------------|----------------------|--------------------|--------------|----------|
|            | 💌 🗖                | Nov. D      | 🚹                 | 3012<br>Hide Zere Ma | l. une         | lassassa   | 0,00<br>Desimals | ⇒0,0<br>Decrease De | sim als         | Europet to Europe    | Support to Web     | L.           |          |
|            | save New Project   | m m A       | ath Model P       | nide zero va         | iues           | increase   | Decimais         | Decrease De         | rcimais         | Export to Excer      | Export to web      | Export o     | J K      |
| Pr         | oject Explorer     |             | DataCFA.txt       | 🍕 Analisis C         | FA.splsm       | m PLS Alg  | orithm (Run N    | o. 1) =             |                 |                      |                    |              |          |
|            | Analisis CFA       |             | Discriminant      | Validity             |                |            |                  |                     |                 |                      |                    |              |          |
|            | DataCFA (300 recon | ds)         | Fornell-Larck     | er Criterion         | Cross          | Loadings   | Heterotr         | iit-Monotrait Rati  | Hetero          | trait-Monotrait Rati | Copy to Clipboard: | Excel Format | R Format |
|            | Analisis Jalur     |             | _                 |                      | _              |            |                  |                     | 10000           |                      |                    |              |          |
|            | Analisis Jalur     | 00 d-1      |                   | Minat                | Perhatian      | Senang     | Tertarik         |                     |                 |                      |                    |              |          |
| -          | Archive            | ou records) | Minat             | 0.439                | 0.724          |            |                  |                     |                 |                      |                    |              |          |
| -          |                    |             | Perhatian         | 0.478                | 0.731          | 0.653      |                  |                     |                 |                      |                    |              |          |
| ) In       | dicators           | X X X       | Tertarik          | 0.003                | 0.029          | 0.032      | 0.690            |                     |                 |                      |                    |              |          |
| <b>D</b> . | Indicator          |             | Her Carris.       | 0.903                | 0.003          | 0.049      | 0.090            |                     |                 |                      |                    |              |          |
|            | b01                |             |                   |                      |                |            |                  |                     |                 |                      |                    |              |          |
|            | 602                |             |                   |                      |                |            |                  |                     |                 |                      |                    |              |          |
|            | 603                |             |                   |                      |                |            |                  |                     |                 |                      |                    |              |          |
|            | 604                |             |                   |                      |                |            |                  |                     |                 |                      |                    |              |          |
|            | 605                |             |                   |                      |                |            |                  |                     |                 |                      |                    |              |          |
|            | 607                |             |                   |                      |                |            |                  |                     |                 |                      |                    |              |          |
|            | b08                |             |                   |                      |                |            |                  |                     |                 |                      |                    |              |          |
|            | b09                |             |                   |                      |                |            |                  |                     |                 |                      |                    |              |          |
| 0          | b10                |             | Final Pacults     | Quality C            | Itaria         |            | Interim Dec      | lte Baco D          | hata            |                      |                    |              |          |
| 1          | b11                |             | Path Coefficients | R Square             | iteria         |            | Stop Criterion   | Changes Setting     | ata             |                      |                    |              |          |
| 2          | b12                |             | Indirect Effects  | f Square             |                |            | and a stration   | Inner N             | lodel           |                      |                    |              |          |
| 3          | b13                |             | Total Effects     | Construct P          | liability an   | d Validity |                  | Outer N             | Aodel           |                      |                    |              |          |
| 4          | b14                |             | Outer Loadings    | Discriminan          | t Validity     |            |                  | Indicate            | or Data (Origin | al)                  |                    |              |          |
| c          | h15                |             | Outer Weights     | Commentity           | Stonestines [] | (1E)       |                  | Indicato            | or Data (Standa | rdized)              |                    |              |          |
| _          |                    |             | Latent Variable   | Model_Fit            |                |            |                  | Indicato            | or Data (Correl | itions)              |                    |              |          |

Untuk kolom Minat dapat diabaikan. Yang perlu diperhatikan adalah kolom Perhatian, Senang, dan Tertarik. Angka yang berada di diagonal merupakan akar AVE dan angka yang lainnya adalah koefisien korelasi antar konstruk. Syarat konstruk tersebut memiliki diskriminan validity yang baik adalah nilai akar AVE harus lebih besar daripada koefisien korelasi. Oleh karena semua angka koefisien korelasi lebih kecil dari nilai akar AVE maka dapat disimpulkan bahwa konstruk yang dikembangkan dalam mengukur minat memiliki diskriminan validity yang baik.

Langkah terakhir yang perlu diperhatikan adalah melihat **loading Factor**. Untuk melihatnya silakan klik *Outer Loading* sehingga akan muncul tampilan berikut:

| L.S.   | New Project                                            | New Path Model | 0110<br>3012<br>Hide Zero | Values | Increase                | nn<br>nn<br>Decimals | 0,00<br>→0,0<br>Decrease Decimals | Export to Excel              | Export to W |
|--------|--------------------------------------------------------|----------------|---------------------------|--------|-------------------------|----------------------|-----------------------------------|------------------------------|-------------|
| Proj   | ject Explorer                                          | E 🖬 😭          | DataCF                    | A.txt  | Analisis CFA.spl        | sm 🔳 PLS A           | lgorithm (Run No. 1) =            |                              |             |
| - 🗆 A  | nalisis CFA                                            |                | Outer Lo                  | ading  | js                      |                      |                                   |                              |             |
|        | Analisis CFA<br>DataCFA (300 records)<br>nalisis Jalur |                | Matrio                    |        |                         |                      |                                   |                              |             |
| -      | Analisis Jalur                                         |                |                           | Mina   | t Perhatian             | Senang               | Tertarik                          |                              |             |
| -      | DataAnalisisJalur (200 r                               | ecords]        | b01                       |        |                         | 0.414                |                                   |                              |             |
|        | o chine                                                |                | b01                       | -0.031 |                         |                      |                                   |                              |             |
|        |                                                        |                | b02                       |        |                         | 0.672                |                                   |                              |             |
|        |                                                        |                | 602                       | 0.046  |                         |                      |                                   |                              |             |
|        |                                                        |                | b03                       |        |                         | 0.646                |                                   |                              |             |
| ) indi | cators                                                 | a <b>a a</b>   | b03                       | 0.054  |                         |                      |                                   |                              |             |
| 0.     | Indicator                                              |                | b04                       |        |                         | 0.884                |                                   |                              |             |
|        | b01                                                    |                | b04                       | 0.13   |                         |                      |                                   |                              |             |
|        | 602                                                    |                | b05                       |        |                         | 0.724                |                                   |                              |             |
|        | b03                                                    |                | b05                       | 0.071  |                         |                      |                                   |                              |             |
|        | 604                                                    |                | b06                       |        |                         | 0.453                |                                   |                              |             |
|        | b05                                                    |                | b06                       | -0.011 |                         |                      |                                   |                              |             |
|        | b06                                                    |                | b07                       |        |                         |                      | 0.690                             |                              |             |
|        | Ь07                                                    |                | b07                       | 0.621  |                         |                      |                                   |                              |             |
|        | b08                                                    |                | b08                       |        |                         |                      | 0.694                             |                              |             |
|        | b09                                                    |                | b08                       | 0.632  | 1                       |                      |                                   |                              |             |
| D      | b10                                                    |                | b09                       |        |                         |                      | 0.734                             |                              |             |
| 1      | b11                                                    |                | b09                       | 0.667  | K                       |                      |                                   |                              |             |
| 2      | b12                                                    |                | b10                       |        |                         |                      | 0.706                             |                              |             |
| 3      | b13                                                    |                | L + n                     |        | 6                       |                      |                                   |                              |             |
| 4      | b14                                                    |                | Final Res                 | ults   | <b>Quality Criteria</b> |                      | Interim Results                   | Base Data                    |             |
| 5      | b15                                                    |                | Path Coeffi               | cients | R.Square                |                      | Stop Criterion Changes            | Setting                      |             |
| 5      | b16                                                    |                | Indirect Eff              | ects   | f Square                |                      |                                   | Inner Model                  |             |
| 7      | b17                                                    |                | Territ Lines              | 1      | Construct Reliabili     | ty and Validity      |                                   | Outer Model                  |             |
| В      | b18                                                    |                | Quter Load                | ings   | Discrimpant Valid       | ty and               |                                   | Indicator Data (Original)    |             |
| 9      | b19                                                    |                | No or other other         |        | Collinearity Statist    | ICS (VIE)            |                                   | Indicator Data (Standardized |             |

Untuk gambar di atas kolom minat dapat diabaikan. Yang perlu diperhatikan adalah kolom Perhatian, Senang, dan Tertarik. Dalam kolom tersebut menunjukkan nilai loading factor untuk masing-masing butir. Jika warna merah menunjukkan nilai loading factor kurang dari 0,7 yang berarti butir tidak valid, sementara yang warna hijau menunjukkan nilai loading factor melebih 0,7 yang berarti butir valid.

Hasil di atas menunjukkan bahwa 6 butir yang dikembangkan untuk mengukur perasaan senang hanya ada dua butir yang valid, yakni butir nomor 4 dan 5, sedangkan butir nomor 1, 2, 3, dan 6 tidak valid. Untuk menafsirkan butir yang lainnya silakan lakukan dengan cara yang sama. Semakin banyak butir yang tidak valid menunjukkan kualitas instrumen yang dikembangkan dalam penelitian ini kurang memenuhi syarat validitas.



Berikut gambar hasil analisis selengkapnya:

# Bagian 3. Structural Equation Model (SEM)

# Tujuan

Untuk menganalisis hubungan sebab akibat antara satu atau beberapa variabel laten dengan satu atau beberapa variabel laten lainnya. Model ini hampir mirip dengan analisis jalur namun variabel observed yang digunakan bersifat ganda.

# **Contoh Masalah**

Bagaimana model persamaan struktural Kompetensi Guru? Apakah variabel Lingkungan dan Kepala Sekolah memiliki pengaruh langsung terhadap Kompetensi Guru? Apakah variabel Motivasi menjadi variabel mediating?

Berikut ini disajikan data tentang butir minat belajar seperti yang terdapat dalam File *DataSEM.xls* 

Dalam file tersebut terdapat 16 variabel observed dan 4 variabel laten dengan rincian sebagai berikut:

- 1. Variabel laten Lingkungan, yang diukur dari 5 variabel observed yang meliputi orangtua, kerabat, masyarakat, teman, dan sekolah.
- 2. Variabel laten Kepala Sekolah, yang diukur dari 3 variabel observed yang meliputi perhatian, kinerja, dan kepribadian.
- 3. Variabel laten Motivasi, yang diukur dari 4 variabel observed yang meliputi kemauan, tanggung jawab, orientasi, dan komitmen.
- 4. Variabel laten Kompetensi Guru, yang diukur dari 4 variabel observed yang meliputi Pribadi, Sosial, Profesional, dan Pedagogik.

Ujilah pengaruh langsung dan tidak langsung variabel eksogen terhadap variabel endogen? Apakah model pengukuran juga memenuhi validitas dan reliabilitas?

# Langkah-langkah analisis

- Persiapan
- 1. Menyiapkan Data

Siapkan data yang akan dianalisis dalam format basis data yang dapat dibuat dengan program Microsoft Excel. Dalam latihan ini sudah disiapkan data dalam format Excel yang disimpan dalam file *DataSEM.xls.* Berikut format entry datanya:

| e   | Home I                                  | Insert [   | Draw I              | Page Layo                 | ut Formula              | as Data | Review                             | View             | Developer             | Help      |                        |            |                                    |                            |      |                 |
|-----|-----------------------------------------|------------|---------------------|---------------------------|-------------------------|---------|------------------------------------|------------------|-----------------------|-----------|------------------------|------------|------------------------------------|----------------------------|------|-----------------|
|     | Cut<br>)Copy ~<br>Format Pain<br>sboard | nter<br>53 | ori<br>I <u>U</u> ∽ | ~ 11<br>  ⊞ ~   ;<br>Font | • A^ A'<br>• <u>A</u> • | ¥ # #   | l ⊉r v   >¶ v<br>  E≣ E≣<br>Alignm | 환 Wrap<br>한 Merg | o Text<br>ge & Center | Gene<br>S | eral<br>~ % <b>9</b> % | Co<br>Form | nditional Fo<br>natting ~ T<br>Sty | rmat as Ce<br>able ~ Style |      | rt Dele<br>Cell |
|     | • 1                                     | × ✓        | fx                  | 14                        |                         |         |                                    |                  |                       |           |                        |            |                                    |                            |      |                 |
| A   | B                                       |            |                     | D                         | E                       | F       | G H                                |                  |                       |           | K L                    | N          | 4 0                                | N (                        | 2    | P               |
| 1_1 | x1_2                                    | X1_3       | X1_                 | 4 X                       | 1_5 X2_1                | x2_2    | x2_3                               | Y1_1             | Y1_2                  | Y1_       | s Y1_4                 | Y2_1       | Y2_2                               | Y2_3                       | Y2_4 | 20              |
|     | 15                                      | 25         | 20                  | 21                        | 15                      | 29      | 20                                 | 12               | 22                    | 10        | 27                     | 35         | 25                                 | 24                         | 22   | 20              |
|     | 27                                      | 47         | 26                  | 20                        | 26                      | 50      | 50                                 | 22               | 20                    | 22        | 20                     | 14         | 28                                 | 10                         | 19   | 13              |
|     | 14                                      | 20         | 22                  | 22                        | 17                      | 30      | 27                                 | 12               | 22                    | 22        | 27                     | 21         | 26                                 | 17                         | 18   | 10              |
|     | 25                                      | 48         | 37                  | 35                        | 27                      | 48      | 48                                 | 22               | 33                    | 37        | 44                     | 48         | 35                                 | 24                         | 18   | 24              |
|     | 25                                      | 27         | 21                  | 21                        | 8                       | 40      | 32                                 | 14               | 27                    | 26        | 35                     | 53         | 33                                 | 24                         | 10   | 10              |
|     | 14                                      | 25         | 23                  | 23                        | 15                      | 30      | 31                                 | 14               | 23                    | 26        | 28                     | 30         | 24                                 | 19                         | 18   | 20              |
|     | 18                                      | 27         | 23                  | 21                        | 15                      | 25      | 28                                 | 15               | 23                    | 25        | 30                     | 34         | 27                                 | 18                         | 17   | 22              |
|     | 8                                       | 15         | 10                  | 31                        | 10                      | 20      | 18                                 | 13               | 13                    | 21        | 27                     | 28         | 30                                 | 31                         | 10   | 12              |
|     | 17                                      | 28         | 23                  | 23                        | 15                      | 25      | 27                                 | 13               | 22                    | 22        | 26                     | 36         | 30                                 | 20                         | 18   | 22              |
|     | 22                                      | 38         | 29                  | 26                        | 20                      | 32      | 32                                 | 16               | 28                    | 30        | 36                     | 42         | 44                                 | 29                         | 25   | 33              |
|     | 16                                      | 33         | 25                  | 25                        | 19                      | 29      | 33                                 | 13               | 28                    | 34        | 40                     | 41         | 35                                 | 23                         | 19   | 29              |
|     | 16                                      | 28         | 23                  | 19                        | 18                      | 29      | 31                                 | 14               | 23                    | 25        | 27                     | 34         | 26                                 | 16                         | 16   | 24              |
|     | 16                                      | 25         | 20                  | 23                        | 15                      | 26      | 28                                 | 13               | 20                    | 25        | 28                     | 34         | 25                                 | 18                         | 14   | 24              |
|     | 26                                      | 45         | 37                  | 35                        | 28                      | 41      | 48                                 | 20               | 37                    | 43        | 49                     | 57         | 28                                 | 18                         | 15   | 25              |
|     | 29                                      | 46         | 38                  | 35                        | 29                      | 49      | 55                                 | 25               | 32                    | 33        | 42                     | 48         | 41                                 | 28                         | 24   | 33              |
|     | 12                                      | 18         | 31                  | 30                        | 12                      | 12      | 13                                 | 22               | 8                     | 11        | 42                     | 18         | 28                                 | 26                         | 6    | 17              |
|     | 21                                      | 35         | 27                  | 29                        | 20                      | 27      | 32                                 | 13               | 28                    | 31        | 35                     | 47         | 44                                 | 29                         | 27   | 35              |
|     | 18                                      | 36         | 25                  | 26                        | 21                      | 42      | 45                                 | 21               | 28                    | 38        | 38                     | 43         | 42                                 | 29                         | 24   | 37              |
|     | 26                                      | 49         | 33                  | 38                        | 27                      | 33      | 34                                 | 18               | 22                    | 26        | 31                     | 36         | 36                                 | 27                         | 25   | 32              |
|     | 20                                      | 46         | 30                  | 28                        | 9                       | 18      | 37                                 | 12               | 31                    | 25        | 21                     | 35         | 27                                 | 28                         | 22   | 10              |

Data di atas harus di save as ke dalam format CSV dengan cara: klik *File → Save As → pilih file type CSV (Comma delimited) → Save* (Perhatikan lokasi dan folder perekamannya)



- 2. Jalankan program SmartPLS sehingga muncul gambar berikut:
- 3. Tentukan lokasi project yakni drive dan folder yang akan digunakan sebagai lokasi penyimpanan dengan cara: Klik *File → Switch Workspace* lalu pilih atau buat folder sesuai yang diinginkan, misalnya **Latihan** (Jika sudah ada tidak perlu membuat lagi).

#### • Memulai Project

 Membuat project baru dengan cara Klik File → Create New Project untuk memulai pengolahan data dengan Smart PLS. Buatlah nama project tersebut. Dalam contoh ini menggunakan "Analisis SEM". Kemudian klik Ok  Mengimport data dari CSV ke SmartPLS dengan cara Klik File → Import Data File. Lalu pilih lokasi atau folder penyimpanan data CSV yang sudah disiapkan sebelumnya. Klik file DataSEM.csv lalu klik OK sehingga akan muncul gambar berikut:

| Sa         | re New Project New Pa                               | th Model Add D | ata Gro       | oup      | Ge      | nerate Di    | ta Group  |          | Clear Da  | ta Group          |             |        |  |  |
|------------|-----------------------------------------------------|----------------|---------------|----------|---------|--------------|-----------|----------|-----------|-------------------|-------------|--------|--|--|
| Proje      | ect Explorer                                        |                | taSEM         | .txt =   | *Ana    | lisis SEM    | splsm 👖   | PLS Alg  | orithm (R | un No. 1          |             |        |  |  |
| Ar         | alisis CFA<br>Analisis CFA<br>DataCFA [300 records] | Delir<br>Value | niter:<br>Quo | te Char  | acter:  | Comm<br>None | <u>1a</u> |          | Encor     | fing:<br>le size: | UTF-<br>300 | 8      |  |  |
| A          | Apalisis Jalur                                      | Num            | ber F         | ormat:   | 1       | US (er       | ample:    | 1,000,23 | ) Indica  | ators:            | 16          |        |  |  |
| 6          | DataAnalisisJalur (200 records)                     | Miss           | ng Va         | ilue Mar | rker:   | None         |           |          | Missi     | ng Valu           | es: 0       |        |  |  |
| Ar         | nalisis SEM                                         | Indica         | tors:         | Indicato | or Corr | elations     | Raw File  | 1        |           |                   |             |        |  |  |
| -          | Analisis SEM                                        |                |               | No. Mi   | ssing   | Mean         | Median    | Min      | Max       | Standa_           | Excess      | Skewn  |  |  |
| A          | chive                                               | X1_1           |               | 1        | 0       | 18.500       | 17.000    | 6.000    | 30.000    | 5.089             | -0.416      | 0.153  |  |  |
|            |                                                     | 000 X1_2       |               | 2        | 0       | 31.663       | 30.000    | 10.000   | 50.000    | 8.918             | -0.403      | 0.086  |  |  |
| Indic      | ators                                               | X1_3           |               | 3        | 0       | 24.640       | 23.000    | 8.000    | 40.000    | 6.963             | -0.209      | -0.002 |  |  |
| <b>)</b> . | Indicator                                           | X1_4           |               | 4        | 0       | 24.900       | 24.000    | 8.000    | 40.000    | 6.926             | -0.341      | 0.028  |  |  |
|            | X1_1                                                | X              |               | 5        | 0       | 18.263       | 17.000    | 6.000    | 30.000    | 5.244             | -0.216      | 0.067  |  |  |
|            | X1_2                                                | X2_1           |               | 6        | 0       | 30.817       | 29.000    | 10.000   | 50.000    | 8.311             | 0.072       | 0.030  |  |  |
|            | X1_3                                                | X2_2           |               |          | 0       | 33.407       | 32.000    | 11.000   | 55.000    | 9.121             | 0.009       | 0.161  |  |  |
|            | X1_4                                                | X2_3           |               | 8        |         | 15.100       | 15.000    | 5.000    | 25.000    | 4.367             | -0.082      | 0.048  |  |  |
|            | X1_5                                                | Y1_1           |               | 9        | 0       | 24.17        | 23.000    | 8.000    | 40.000    | 6.919             | -0.188      | 0.082  |  |  |
|            | X2_1                                                | Y1_2           |               | 10       | 0       | 27.473       | 20.000    | 9.000    | 45.000    | 7,370             | 0.075       | -0.025 |  |  |
|            | X2_2                                                | Y1_3           |               | 11       | 0       | 30.823       | 29.000    | 0000     | 50.000    | 8.236             | -0.173      | 0.047  |  |  |
|            | X2_3                                                | ¥1_4           |               | 12       | 0       | 36.250       | 35.000    | 12.000   | 50,000    | 10.155            | -0.163      | 0.088  |  |  |
|            | Y1_1                                                | Y2_1           |               | 13       | 0       | 30.630       | 29.000    | 10.000   | 50.000    | 8.375             | -0.270      | 0.087  |  |  |
|            | Y1_2                                                | Y2_2           |               | 14       | 0       | 21.580       | 20.000    | 7.000    | 35.000    | 5.00              | -0.210      | 0.248  |  |  |
|            | Y1_3                                                | Y2_3           |               | 15       | 0       | 18.317       | 17.000    | 6.000    | 30.000    | 4.931             | -0-+ -0     | 0.045  |  |  |
|            | Y1_4                                                | Y2_4           |               | 16       | 0       | 23.980       | 23.000    | 8.000    | 40.000    | 6.847             | -0.059      | 054    |  |  |
|            | Y2_1                                                |                |               |          |         |              |           |          |           |                   |             |        |  |  |
|            | Y2 2                                                |                |               |          |         |              |           |          |           |                   |             |        |  |  |

3. Menggambar model dengan cara double klik di gambar berikut: 🙎 Analisis SEM sehingga akan muncul gambar berikut:

|                  | oit view memes c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | alculate into canguage    |           |         | 0               | -       |        | _               | _       |                  |                   |        |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|---------|-----------------|---------|--------|-----------------|---------|------------------|-------------------|--------|
| s                | ave New Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rew Path Model            | G<br>Undo | Redo    | Zoom Out        | Zoom In | Select | Latent Variable | Connect | Quadratic Effect | Addreating Effect | Commen |
| Pro              | ject Explorer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0 😭                     | 🗎 Data    | SEM. et | Analisis SEM.sp | lsm =   |        |                 |         |                  |                   |        |
|                  | Inalisis CFA<br>Analisis CFA<br>DataCFA [300 record<br>Inalisis Jalur<br>Analisis Jalur<br>DataAnalisisJalur<br>[2]<br>Inalisis SEM<br>Analisis SEM<br>DataSEM [300 record<br>Indisection (300 record)<br>Charles | is]<br>20 records]<br>ds] |           |         |                 |         |        |                 |         |                  |                   |        |
| Ind              | icators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 777                       |           |         |                 |         |        |                 |         |                  |                   |        |
| 0.               | Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |           |         |                 |         |        |                 |         |                  |                   |        |
|                  | X1_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |           |         |                 |         |        |                 |         |                  |                   |        |
|                  | X1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |           |         |                 |         |        |                 |         |                  |                   |        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |           |         |                 |         |        |                 |         |                  |                   |        |
|                  | X1_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |           |         |                 |         |        |                 |         |                  |                   |        |
|                  | X1_3<br>X1_4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |           |         |                 |         |        |                 |         |                  |                   |        |
|                  | X1_3<br>X1_4<br>X1_5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |           |         |                 |         |        |                 |         |                  |                   |        |
|                  | X1_3<br>X1_4<br>X1_5<br>X2_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |           |         |                 |         |        |                 |         |                  |                   |        |
|                  | X1_3<br>X1_4<br>X1_5<br>X2_1<br>X2_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |           |         |                 |         |        |                 |         |                  |                   |        |
|                  | X1_3<br>X1_4<br>X1_5<br>X2_1<br>X2_2<br>X2_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |           |         |                 |         |        |                 |         |                  |                   |        |
|                  | X1_3<br>X1_4<br>X1_5<br>X2_1<br>X2_2<br>X2_3<br>Y1_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |           |         |                 |         |        |                 |         |                  |                   |        |
| 0                | X1_3<br>X1_4<br>X1_5<br>X2_1<br>X2_2<br>X2_3<br>Y1_1<br>Y1_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |           |         |                 |         |        |                 |         |                  |                   |        |
| 0                | X1,3<br>X1,4<br>X1,5<br>X2,1<br>X2,2<br>X2,3<br>Y1,1<br>Y1,2<br>Y1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |           |         |                 |         |        |                 |         |                  |                   |        |
| 0                | X1.3<br>X1.4<br>X1.4<br>X1.5<br>X2_1<br>X2_2<br>X2_3<br>Y1_1<br>Y1_2<br>Y1_3<br>Y1_4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |           |         |                 |         |        |                 |         |                  |                   |        |
| D<br>1<br>2<br>3 | X1.3<br>X1.4<br>X1.5<br>X2,1<br>X2,2<br>Y1,1<br>Y1,2<br>Y1,3<br>Y1,4<br>Y2,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |           |         |                 |         |        |                 |         |                  |                   |        |
| D<br>1<br>2<br>3 | X1.3<br>X1.4<br>X1.4<br>X1.5<br>X2.1<br>X2.2<br>X2.3<br>Y1.1<br>Y1.2<br>Y1.3<br>Y1.4<br>Y2.1<br>Y2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |           |         |                 |         |        |                 |         |                  |                   |        |

Untuk mulai menggambar model lakukan dengan cara memilih beberapa nomor butir yang mengukur satu konstruk, caranya adalah dengan mengklik nomor butir disertai menekan tombol CTRL. Setelah terpilih semua lalu drag ke kotak sebelah kanan. Contohnya: Klik X1\_1 lalu sambil menekan tombol CTRL klik X1\_2, klik X1\_3, dst sampai X1\_5. Setelah itu drag ke kotak sebelah kanan untuk membuat variabel laten pertama

(ubah namanya dengan variabel **Lingkungan**). Lakukan juga dengan cara yang sama untuk variabel kedua (**KepSek**), variabel ketiga (**Motivasi**), dan variabel keempat **(Kompetensi)**. Tata posisi variabel tersebut sehingga seperti terlihat pada gambar berikut:



Kemudian buat pola hubungan dengan cara klik menu *Edit → Add Connection(s)...*. Lalu klik variabel Lingkungan trus klik variabel Kompetensi, klik variabel Lingkungan trus klik variabel Motivasi, dan seterusnya sehingga akan tampil gambar berikut:



Karena warna variabel laten sudah biru, artinya sudah model sudah siap untuk dianalisis. Jangan lupa simpan hasil pekerjaan dengan cara klik menu *File → Save* 

#### • Analisis PLS Algorithm

Lakukan analisis dengan cara klik menu *Calculate → PLS Algorithm*. Maka akan muncul konfirmasi Maksimum Literasi sebagai berikut:

| Setup 🏟 Weighting               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Basic Settings                  |                      | Basic Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Neighting Scheme                | Centroid Factor Path | Weighting Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Maximum Iterations:             | 300                  | PLS-SEM allows the user to apply three structural model weighting schemes:                                                                                                                                                                                                                                                                                                                                                                                                            |
| Stop Criterion (10^-X):         | 7                    | <ol> <li>centroid weighting scheme,</li> <li>factor weighting scheme, and</li> <li>path weighting scheme (default).</li> </ol>                                                                                                                                                                                                                                                                                                                                                        |
| Configure individual initial we | ights                | While the results differ little for the alternative weighting schemes, path weighting is the recommended approach.<br>This weighting scheme provides the highest RV value for endogenous latent variables and is generally applicable<br>for all kinds of PLS path models specifications and estimations. Mercever, when the path model includes higher-<br>order constructs (otten called second-order models), researchers should usually not use the centroid weighting<br>scheme. |
|                                 |                      | Maximum Iterations                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                      | This parameter represents the maximum number of ferations that will be used for calculating the PLS results.<br>This number should be sufficiently large (e.g., 2000 tetrations). When checking the PLS-SEM result, one must<br>make sure that the algorithm (not stop because the maximum number of ferations variance) bud due to the<br>stop criterion. Note: The selection of 0 for the maximum number of ferations variance bud due to the<br>sum accrease approach.             |
|                                 |                      | Stop Criterion                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 |                      | The PLS algorithm stops when the change in the outer weights between two consecutive iterations is smaller than<br>this stop criterion value (or the maximum number of iterations is reached). This value should be sufficiently small<br>(e.g. 10°-5° or 10°-7°).                                                                                                                                                                                                                    |
|                                 |                      | Advanced Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Biarkan sesuai default dan klik tombol *Start Calculation.* Setelah muncul output hasil analisis, di bagian kotak sebelah kanan bawah klik *Model Fit* untuk melihat hasil model fit sebagai berikut:

|        | Ve N                          | Project          | Rew Path Model | 0110<br>3011<br>Hide Zero Values | •0,0<br>0,00<br>Increase Decim        | 0,00<br>→0,0<br>Jals Decrease Decima | els Export to Excel         | Export to Web | R<br>Export to R |   |
|--------|-------------------------------|------------------|----------------|----------------------------------|---------------------------------------|--------------------------------------|-----------------------------|---------------|------------------|---|
| Proi   | ect Explorer                  |                  |                | DataSEM txt                      | Analisis SFM solsm                    | PLS Algorithm (Run No. 2             | 1=                          |               |                  |   |
| - 🗆 A  | nalisis CFA                   |                  |                | Model Eit                        |                                       |                                      | ·                           |               |                  |   |
| 2      | Analisis CF                   | A                |                | Model_Fit                        |                                       |                                      |                             |               |                  |   |
| _      | DataCFA [                     | 300 records]     |                | Fit Summary                      | rms Theta                             |                                      |                             |               |                  | 0 |
|        | nalisis Jalur<br>Amalisis Jal | IF.              |                |                                  | Saturated Model Fr                    | timated Model                        |                             |               |                  |   |
| Ē      | DataAnali                     | sisJalur [200 re | cords]         | SRMR                             | 0.062                                 | 0.062                                |                             |               |                  |   |
| ~ 🗆 A  | nalisis SEM                   |                  |                | d ULS                            | 0.520                                 | 0.520                                |                             |               |                  |   |
| - 2    | Analisis SE                   | м                |                | d_G                              | 0.256                                 | 0.256                                |                             |               |                  |   |
|        | DataSEM                       | 300 records]     |                | Chi-Square                       | 470.187                               | 470.187                              |                             |               |                  |   |
| -      | icilive                       |                  |                | NFI                              | 0.813                                 | 0.813                                |                             |               |                  |   |
| 🔁 Indi | cators                        |                  | 7 <b>7</b> 7   |                                  |                                       |                                      |                             |               |                  |   |
| No.    | Indicator                     |                  |                |                                  |                                       |                                      |                             |               |                  |   |
| 1      | X1_1                          |                  |                |                                  |                                       |                                      |                             |               |                  |   |
| 2      | X1_2                          |                  |                |                                  |                                       |                                      |                             |               |                  |   |
| 3      | X1_3                          |                  |                |                                  |                                       |                                      |                             |               |                  |   |
| 1      | X1_4                          |                  |                |                                  |                                       |                                      |                             |               |                  |   |
| 5      | X1_5                          |                  |                |                                  |                                       |                                      |                             |               |                  |   |
| 5      | X2_1                          |                  |                |                                  |                                       |                                      |                             |               |                  |   |
| 7      | X2_2                          |                  |                |                                  |                                       |                                      |                             |               |                  |   |
| 3      | X2_3                          |                  |                |                                  |                                       |                                      |                             |               |                  |   |
| 9      | ¥1_1                          |                  |                |                                  |                                       |                                      |                             |               |                  |   |
| 10     | ¥1_2                          |                  |                |                                  |                                       |                                      |                             |               |                  |   |
| 11     | Y1_3                          |                  |                |                                  |                                       |                                      |                             |               |                  |   |
| 12     | ¥1_4                          |                  |                |                                  |                                       |                                      |                             |               |                  |   |
| 13     | Y2_1                          |                  |                |                                  |                                       |                                      |                             |               |                  |   |
| 14     | ¥2_2                          |                  |                | Final Results                    | Quality Criteria                      | Interim Results                      | Base Data                   |               |                  |   |
| 15     | Y2_3                          |                  |                | Path Coefficients                | R Square                              | Stop Criterion Change                | es Setting                  |               |                  |   |
| 16     | Y2_4                          |                  |                | Indirect Effects                 | T Square<br>Construct Paliability and | Validity                             | Inner Model<br>Outer Model  |               |                  |   |
|        |                               |                  |                | Outer Loadings                   | Discriminant Validity                 | YONNIY                               | Indicator Data (Original)   |               |                  |   |
|        |                               |                  |                | Outer Weighte                    | Collinearity Statistics (VIE          | Ð                                    | Indicator Data (Standardize | ed)           |                  |   |
|        |                               |                  |                | Latent Variable                  | Model_Fit                             |                                      | Indicator Data (Correlation | 5)            |                  |   |
|        |                               |                  |                | Residuals                        | Model Selection Onteria               |                                      |                             |               |                  |   |

Hasil di atas menunjukkan bahwa nilai SRMR yang ditemukan sebesar 0,062. Oleh karena nilai tersebut lebih kecil dari 0,100 maka model sudah fit.

Hal yang perlu dilihat berikutnya adalah pembuktian validitas dan estimasi reliabilitasnya. Untuk melihat hasilnya silakan klik *Construct Reliability and Validity* sehingga akan muncul gambar berikut:

| L<br>Se                                                 | ave New Pro                                                                          | oject N       | R<br>lew Path Model                | 3012<br>Hide Zero Value                       | s Increase                       | na<br>aa<br>Decimals  | 0,00<br>+0,0<br>Decrease Decimals | Export to Excel                                         | Export to Web | R<br>Export to R |  |  |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------|---------------|------------------------------------|-----------------------------------------------|----------------------------------|-----------------------|-----------------------------------|---------------------------------------------------------|---------------|------------------|--|--|--|
| Proj                                                    | ject Explorer                                                                        |               |                                    | DataSEM.txt                                   | 🍕 "Analisis SEM.s                | plsm 🔲 PLS Alg        | orithm (Run No. 2) =              |                                                         |               |                  |  |  |  |
| Analisis CFA     Analisis CFA     DataCFA [300 records] |                                                                                      |               | Construct Reliability and Validity |                                               |                                  |                       |                                   |                                                         |               |                  |  |  |  |
|                                                         |                                                                                      |               | 🔲 Matrix 👯                         | Cronbach's Alpha                              | 👬 rho_A 👯                        | Composite Reliability | Average Variance Extra            | cted (AVE)                                              |               |                  |  |  |  |
|                                                         | Analisis Jalur<br>Analisis Jalur                                                     |               |                                    |                                               | Cronbach                         | Alpha rho             | A Composite Reliab                | lity Average Variance Extra                             | cted (AVE)    |                  |  |  |  |
| i                                                       | DataAnalisisJal                                                                      | ur [200 recor | ds]                                | Kasek                                         |                                  | 0.803 0.80            | 4 0.8                             | 184                                                     | 0.717         |                  |  |  |  |
| Analisis SEM     Analisis SEM     DataSEM [300 records] |                                                                                      |               | Kompetensi                         |                                               | 0.812 0.81                       | 5 0.8                 | 76                                | 0.640                                                   |               |                  |  |  |  |
|                                                         |                                                                                      |               | Lingkungan                         |                                               | 0.863 0.86                       | 5 0.9                 | 01                                | 0.647                                                   |               |                  |  |  |  |
|                                                         |                                                                                      |               | Motivasi                           |                                               | 0.841 0.84                       | 1 0.8                 | 193                               | 0.677                                                   |               |                  |  |  |  |
| )                                                       | X1.3<br>X1.4<br>X1.5<br>X2.1<br>X2.2<br>X2.3<br>Y1.1<br>Y1.2<br>Y1.3<br>Y1.4<br>Y2.2 |               |                                    | Final Decole                                  | Auglity Classic                  |                       | torin Doubte                      | Ress Data                                               |               |                  |  |  |  |
|                                                         | Y2 3                                                                                 |               |                                    | Path Coefficient                              | Quality Criteria                 | in                    | terim Results                     | Base Data                                               |               |                  |  |  |  |
|                                                         | Y2_4                                                                                 |               |                                    | Indirect Effects Total Effects Outer Loadings | f Square<br>Construct Reliabilit | ty and Validity       | >                                 | Inner Model<br>Outer Model<br>Indicator Data (Original) |               |                  |  |  |  |

Hasil diatas menunjukkan bahwa:

- Variabel Kepala Sekolah memiliki estimasi reliabilitas yang baik karena semua ukuran reliabilitas melebihi 0,7. Validitasnya juga termasuk baik karena nilai AVE 0,717 lebih dari 0,5.
- Variabel Kompetensi memiliki estimasi reliabilitas yang baik karena semua ukuran reliabilitas melebihi 0,7. Validitasnya juga termasuk baik karena nilai AVE 0,640 lebih dari 0,5.
- Variabel Lingkungan memiliki estimasi reliabilitas yang baik karena semua ukuran reliabilitas melebihi 0,7. Validitasnya juga termasuk baik karena nilai AVE 0,647 lebih dari 0,5.
- Variabel Motivasi memiliki estimasi reliabilitas yang baik karena semua ukuran reliabilitas melebihi 0,7. Validitasnya juga termasuk baik karena nilai AVE 0,677 lebih dari 0,5.

Hal yang lain yang perlu dilihat adalah validitas diskriminant. Untuk melihat hasilnya silakan klik *Discriminant Validity* sehingga akan muncul gambar berikut:

| L<br>Si      | ve New Project            | Rew Path Model        | 30110<br>3012<br>Hide Zero Value: | s Increa          | ◆0,0<br>0,00<br>se Decimals | a,aa<br>◆a,a<br>Decrease Decimals | Export to           | Excel I      | ixport to Web     | Export to R |  |  |
|--------------|---------------------------|-----------------------|-----------------------------------|-------------------|-----------------------------|-----------------------------------|---------------------|--------------|-------------------|-------------|--|--|
| Pro          | ject Explorer             | C 🗆 🚖                 | DataSEM.txt                       | 📢 *Analisis SEN   | Asplsm 🔲 PLS Alg            | gorithm (Run No. 2) =             |                     |              |                   |             |  |  |
| -            | nalisis CFA               | Discriminant Validity |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
| _            | Analisis CFA              |                       | Discriminant                      | validity          |                             |                                   |                     |              |                   |             |  |  |
| _            | DataCFA [300 records]     |                       | Fornell-Lard                      | ker Criterion 🔟   | Cross Loadings              | Heterotrait-Mono                  | otrait Ratio (HTMT) | 👬 Heterotra  | t-Monotrait Ratio | (HTMT)      |  |  |
| - 🗆 A        | nalisis Jalur             |                       |                                   | Karak             | Kompetenr                   | i Linekungan                      | Motivari            |              |                   |             |  |  |
| 1            | DataAnalisisJalur (200 re | cords                 | Karok                             | 0.847             | Kompetens                   | i Lingkungan                      | NIOUVASI            |              |                   |             |  |  |
| Analisis SEM |                           |                       | Kompetensi                        | 0.547             | 0.800                       | 1                                 |                     |              |                   |             |  |  |
| 1            | Analisis SEM              | Lingkungan            | 0.597                             | 0.581             | 0.804                       |                                   |                     |              |                   |             |  |  |
| _            | DataSEM [300 records]     |                       | Motivasi                          | 0.547             | 0.595                       | 0.596                             | 0.823               |              |                   |             |  |  |
| A 4          | irchive                   |                       | moundai                           | 0.541             | 0.555                       | 0.550                             | 0.025               |              |                   |             |  |  |
| 👌 Ind        | icators                   | 777                   |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
| lo.          | Indicator                 |                       |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
|              | X1 1                      |                       |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
|              | ¥1.2                      |                       |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
|              | ¥1.2                      |                       |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
|              | ¥1.4                      |                       |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
|              | ¥1.5                      |                       |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
|              | ¥2.1                      |                       |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
|              | ¥2.2                      |                       |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
|              | ¥2.3                      |                       |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
| ,<br>)       | ¥1.1                      |                       |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
| 0            | ¥1.2                      |                       |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
| 1            | ¥1.3                      |                       |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
| 2            | ¥1.4                      |                       |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
| 3            | ¥2.1                      |                       |                                   |                   |                             |                                   |                     |              |                   |             |  |  |
| 4            | ¥2.2                      |                       | Final Decults                     | Quality Criter    | da la                       | torim Doculto                     | Roce Data           |              |                   |             |  |  |
| 5            | ¥2.3                      |                       | Path Coefficients                 | Quanty Criter     |                             | iteriini kesults                  | Satting             |              |                   |             |  |  |
| 6            | ¥2.4                      |                       | Indirect Effects                  | f Square          | 28                          | op smenon changes                 | Inner Model         |              |                   |             |  |  |
| 0            |                           |                       | Total Effects                     | Construct Reliat  | Validity                    |                                   | Outer Model         |              |                   |             |  |  |
|              |                           |                       | Outer Load egs                    | Discriminant Va   | lidity                      |                                   | Indicator Data (O   | riginal)     |                   |             |  |  |
|              |                           |                       | Outer Weights                     | Collinearity stat | ISUCS (VIF)                 |                                   | Indicator Data (S   | andardized)  |                   |             |  |  |
|              |                           |                       | Latent Variable                   | Model Fit         |                             |                                   | Indicator Data (C   | orrelations) |                   |             |  |  |
|              |                           |                       |                                   |                   |                             |                                   |                     |              |                   |             |  |  |

Angka yang berada di diagonal merupakan akar AVE dan angka yang lainnya adalah koefisien korelasi antar variabel. Syarat konstruk tersebut memiliki diskriminan validity yang baik adalah nilai akar AVE harus lebih besar daripada koefisien korelasi. Oleh karena semua angka koefisien korelasi lebih kecil dari nilai akar AVE maka dapat disimpulkan bahwa seluruh yang dikembangkan dalam model memiliki diskriminan validity yang baik.

Langkah terakhir yang perlu diperhatikan adalah melihat **loading Factor**. Untuk melihatnya silakan klik *Outer Loading* sehingga akan muncul tampilan berikut:

| Sav      | re New Project           | Rew Path Model | Hide Zerc      | o<br>Values |             | ncrease D    | ecimals                   | 0.00<br>→0,0<br>Decrease Decimals | Export to Excel               | Export to Web | Expor |  |
|----------|--------------------------|----------------|----------------|-------------|-------------|--------------|---------------------------|-----------------------------------|-------------------------------|---------------|-------|--|
| Proje    | ct Explorer              | DataSE         | M.txt          | 🗧 *Analis   | is SEM.spl  | sm 🔳 PL      | S Algorithm (Run No. 2) = | E Bootstrapping (Run No. 1)       |                               |               |       |  |
| 🗸 🗔 An   | alisis CFA               | Outer Lo       | Outer Loadings |             |             |              |                           |                                   |                               |               |       |  |
| - 4      | Analisis CFA             |                |                |             |             |              |                           |                                   |                               |               |       |  |
| v 🗖 An   | alisis Jalur             |                | Matri          | ×           |             |              |                           |                                   |                               |               |       |  |
|          | Analisis Jalur           |                |                | Kasek       | Komp        | Lingku       | Motiv                     |                                   |                               |               |       |  |
| _        | DataAnalisisJalur [200 n | ecords]        | X1_1           |             |             | 0.815        |                           |                                   |                               |               |       |  |
| ∽ □ An   | alisis SEM               |                | X1_2           |             |             | 0.828        |                           |                                   |                               |               |       |  |
| - 🖀      | Analisis SEM             |                | X1_3           |             |             | 0.803        |                           |                                   |                               |               |       |  |
| Arc      | chive                    |                | X1_4           |             |             | 0.786        |                           |                                   |                               |               |       |  |
|          |                          | 000            | X1_5           |             |             | 0.788        |                           |                                   |                               |               |       |  |
| 🔰 Indica | ators                    | <u> </u>       | X2_1           | 0.836       |             |              |                           |                                   |                               |               |       |  |
| lo.      | Indicator                |                | X2_2           | 0.864       |             |              |                           |                                   |                               |               |       |  |
|          | X1_1                     |                | X2_3           | 0.840       |             |              |                           |                                   |                               |               |       |  |
|          | X1_2                     |                | Y1_1           |             |             |              | 0.830                     |                                   |                               |               |       |  |
|          | X1_3                     |                | Y1_2           |             |             |              | 0.809                     |                                   |                               |               |       |  |
|          | X1_4                     |                | Y1_3           |             |             |              | 0.835                     |                                   |                               |               |       |  |
|          | X1_5                     |                | Y1_4           |             |             |              | 0.816                     |                                   |                               |               |       |  |
|          | X2_1                     |                | Y2_1           |             | 0.825       |              |                           |                                   |                               |               |       |  |
|          | X2_2                     |                | ¥2_2           |             | 0.791       |              |                           |                                   |                               |               |       |  |
| 3        | X2_3                     |                | Y2_3           |             | 0.746       |              |                           |                                   |                               |               |       |  |
|          | ¥1_1                     |                | ¥2_4           |             | 0.835       |              |                           |                                   |                               |               |       |  |
| 0        | Y1_2                     |                |                |             |             |              |                           |                                   |                               |               |       |  |
| 1        | Y1_3                     |                |                |             |             |              |                           |                                   |                               |               |       |  |
| 2        | ¥1_4                     |                |                |             |             |              |                           |                                   |                               |               |       |  |
| 5        | Y2_1                     |                | -              |             |             |              |                           |                                   |                               |               |       |  |
| 4        | Y2_2                     |                | Final Res      | ults        | Quality     | Criteria     |                           | Interim Results                   | Base Data                     |               |       |  |
| 5        | 12_3                     |                | Path Coeff     | icients i   | R Square    |              |                           | Stop Criterion Changes            | Setting                       |               |       |  |
| 6        | ¥2_4                     |                | Total Effor    | lects 1     | Construct   | Reliability  | and Validit               | N.                                | Outer Model                   |               |       |  |
|          |                          |                | Outer Loa      | dings I     | Discrimina  | ant Validity | /                         | 2                                 | Indicator Data (Original)     |               |       |  |
|          |                          |                | Outor Wai      | able        | collinearit | y Statistics | (VIF)                     |                                   | Indicator Data (Standardized) |               |       |  |
|          |                          |                | Outer Wei      | ghte -      | ollinearit  | y Statistics | (VIF)                     |                                   | Indicator Data (Standardized) |               |       |  |

Yang perlu diperhatikan dalam kolom tersebut menunjukkan nilai loading factor untuk masing-masing variabel. Jika warna merah menunjukkan nilai loading factor kurang dari 0,7 yang berarti variabel tidak valid, sementara yang warna hijau menunjukkan nilai loading factor melebih 0,7 yang berarti variabel valid. Oleh karena semua loading factor lebih dari 0,7 maka semua variabel yang digunakan memiliki validitas yang baik.

#### • Analisis Bootstrapping

Pengujian inner model dilakukan dengan cara aktifkan tabulator **.splsm** lalu klik menu *Calculate → Bootstrapping* sehingga akan muncul gambar berikut:

| Setup 🗘 Partial Least                       | Squares 👘 Weighting                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Basic Settings                              |                                                                                                     | Basic Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| lubsamples                                  | 500                                                                                                 | Subsamples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Do Parallel Processing<br>Amount of Results | Basic Bootstrapping     Complete Bootstrapping                                                      | In bootstrapping, subsamples are created with observations randomly drawn (with replacement) from the original<br>set of data. To ensure stability of results, the number of subsamples should be large. For an initial assessment,<br>one may use a smaller number of bootstrap subsamples (e.g. 500). For the final results preparation, however,<br>one should use a large number of bootstrap subsamples (e.g. 5.000). Note: Larger number of bootstrap subsamples (e.g. 5.000).<br>Note: Larger number of bootstrap subsamples (e.g. 5.000).                                                                 |
| Advanced Settings                           |                                                                                                     | Do Parallel Processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Confidence Interval Method                  | O Percentile Bootstrap     Studentized Bootstrap     Size Corrected and Accelerated (BCa) Bootstrap | This option runs the bootstrapping routine on multiple processors (if your computer device offers more than one<br>core). Using parallel computing will reduce computation time.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| art Tunn                                    | One Tailed O Two Tailed                                                                             | Amount of Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ignificance Level                           | 0.05                                                                                                | (1) Basic Bootstrapping (ideauti)<br>Only a basic set of results for bootstrapping is assembled. This includes: Path Coefficients, Indirect<br>Effects, Total Effects, Outer Loadings, and Outer Weights. This option is much taster if a large number of<br>resamples is drawn and useful for perliminary data analysis.                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                     | (2) Complete Bootstrapping<br>All available results for bootstrapping are assembled. For example, this includes: Path Coefficients,<br>All available results for bootstrapping, coefficient (Allegine, 6, Sourie, Average) tailance Extructed<br>(All-E), Compared to Biothery, Combender A adva, and Hearters, Mootstar, Reise (HAT). It uses a<br>Bolten Stitle type bootstrapping for the goodness-off measures. Note: This option needs more time to<br>compute the results. Also, this option needs more computer memory (how to assign more memory to<br>SmartPLS, see the <u>FAQ on www.smartpls.com</u> ) |
|                                             |                                                                                                     | Advanced Cettings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Biarkan secara default lalu klik tombol *Start Calculation* sehingga akan muncul gambar berikut:

| L.<br>Si              | New Project              | New Path Model     | 3012<br>Hide Zero Values                   | ene<br>0.00<br>Increase Decima | 0.00<br>→0.0<br>Is Decrease D    | ecimals Export to       | Excel         | Export to Web | Export to R |  |  |  |  |
|-----------------------|--------------------------|--------------------|--------------------------------------------|--------------------------------|----------------------------------|-------------------------|---------------|---------------|-------------|--|--|--|--|
| Project Explorer      |                          |                    | DataSEM.txt 📢 *Ar                          | nalisis SEM.splsm              | PLS Algorithm (Run               | No. 2) E Bootstrapping  | (Run No. 1) = |               |             |  |  |  |  |
|                       | Analisis CFA             |                    | Path Coefficients                          |                                |                                  |                         |               |               |             |  |  |  |  |
| DataCFA (300 records) |                          | Mean, STDEV, T-Val | lues, P-Values 📃                           | Confidence Intervals           | Confidence Intervals B           | lias Corrected          | Samples       |               |             |  |  |  |  |
| 1                     | 🖁 Analisis Jalur         |                    |                                            | 0                              | Driginal Sample (O)              | Sample Mean (M) Standar | rd Deviation  | T Statistics  | P Values    |  |  |  |  |
| _                     | DataAnalisisJalur (200 m | cords]             | Kasek -> Kompetensi                        |                                | 0.215                            | 0.213                   | 0.069         | 3.118         | 0.002       |  |  |  |  |
|                       | inalisis SEM             |                    | Kasek -> Motivasi                          |                                | 0.298                            | 0.301                   | 0.064         | 4.644         | 0.000       |  |  |  |  |
|                       | DataSEM (300 records)    |                    | Lingkungan -> Kompet                       | ensi                           | 0.261                            | 0.262                   | 0.066         | 3.977         | 0.000       |  |  |  |  |
| 637                   | Archive                  |                    | Lingkungan -> Motivas                      |                                | 0.418                            | 0.417                   | 0.059         | 7.037         | 0.000       |  |  |  |  |
| ) Ind                 | icators                  | 111                | Motivasi -> Kompetens                      | i.                             | 0.322                            | 0.326                   | 0.065         | 4.922         | 0.000       |  |  |  |  |
| ŧo.                   | Indicator                |                    |                                            |                                |                                  |                         |               |               |             |  |  |  |  |
|                       | X1_1                     |                    |                                            |                                |                                  |                         |               |               |             |  |  |  |  |
|                       | X1_2                     |                    |                                            |                                |                                  |                         |               |               |             |  |  |  |  |
|                       | X1_3                     |                    |                                            |                                |                                  |                         |               |               |             |  |  |  |  |
|                       | X1_4                     |                    |                                            |                                |                                  |                         |               |               |             |  |  |  |  |
| i -                   | X1_5                     |                    |                                            |                                |                                  |                         |               |               |             |  |  |  |  |
| 1                     | X2_1                     |                    |                                            |                                |                                  |                         |               |               |             |  |  |  |  |
|                       | X2_2                     |                    |                                            |                                |                                  |                         |               |               |             |  |  |  |  |
| 6                     | X2_3                     |                    |                                            |                                |                                  |                         |               |               |             |  |  |  |  |
| ,                     | ¥1_1                     |                    |                                            |                                |                                  |                         |               |               |             |  |  |  |  |
| 0                     | ¥1_2                     |                    |                                            |                                |                                  |                         |               |               |             |  |  |  |  |
| 1                     | ¥1_3                     |                    |                                            |                                |                                  |                         |               |               |             |  |  |  |  |
| 2                     | ¥1_4                     |                    |                                            |                                |                                  |                         |               |               |             |  |  |  |  |
| 3                     | ¥2_1                     |                    | <u>k</u>                                   |                                |                                  |                         |               |               |             |  |  |  |  |
| 4                     | ¥2_2                     |                    | Final Results                              | Histograms                     | Base Data                        |                         |               |               |             |  |  |  |  |
| 5                     | ¥2_3                     |                    | Path Coefficients                          | th Coefficients H              | istogram Setting                 |                         |               |               |             |  |  |  |  |
| 6                     | ¥2_4                     |                    | Total Indiana Ellecto                      | Indirect Effects Hist          | ogram Inner Model                |                         |               |               |             |  |  |  |  |
|                       |                          |                    | Specific Indirect Effects<br>Total Effects | Total Effects Histog           | ram Outer Model<br>Indicator Dat | a (Original)            |               |               |             |  |  |  |  |

Hasil tersebut di atas mencerminkan *Path Coefficients* yang merupakan hasil pengujian pengaruh langsung (direct effect) sehingga dapat disimpulkan sebagai berikut:

- Kepala Sekolah berpengaruh positif terhadap Kompetensi Guru dengan t statistik 3,118 (p=0,002)
- Kepala Sekolah berpengaruh positif terhadap Motivasi Guru dengan t statistik 4,664 (p<0,001)
- Lingkungan berpengaruh positif terhadap Kompetensi Guru dengan t statistik 3,977 (p<0,001)
- Lingkungan berpengaruh positif terhadap Motivasi Guru dengan t statistik 7,037 (p<0,001)
- Motivasi Guru berpengaruh positif terhadap Kompetensi Guru dengan t statistik 4,922 (p<0,001)

Untuk melihat pengaruh tidak langsung (indirect effects) dapat diklik *Total Indirect Effects* sehingga akan muncul gambar berikut:



Berdasarkan gambar tersebut dapat disimpulkan bahwa:

- Variabel Kepala Sekolah memiliki pengaruh tidak langsung terhadap Kompetensi Guru melalui Motivasi Guru dengan t statistik 3,183 (p=0,002)
- Variabel Lingkungan memiliki pengaruh tidak langsung terhadap Kompetensi Guru melalui Motivasi Guru dengan t statistik 4,178 (p<0,001)

Untuk melihat lebih jauh terkait loading factor masing-masing variabel obeserved, dapat diklik bagian *Outer Loadings* sehingga akan muncul gambar berikut:

| Sa                              | ve New Project        | Rew Path Model | 3012<br>Hide Zero Values  | ●0.0<br>0,00<br>Increase Decimal | 0,00<br>→0,0<br>Decrease Deci | mals Export to          | Excel          | Export to Web | Expor |
|---------------------------------|-----------------------|----------------|---------------------------|----------------------------------|-------------------------------|-------------------------|----------------|---------------|-------|
| Proj                            | ect Explorer          | E 🗆 😭          | 🗐 DataSEM.txt 🥰 *A        | Analisis SEM.splsm 👔             | PLS Algorithm (Run No         | a. 2) 🧰 Bootstrapping   | (Run No. 1) =  |               |       |
| - 🗆 A                           | nalisis CFA           |                | Outer Loadings            |                                  |                               |                         |                |               |       |
| 1                               | Analisis CFA          |                |                           |                                  |                               | Confederate Internation |                | Constant .    |       |
|                                 | nalisis Jalur         |                | Mean, STDEV, 1-V          | alues, P-values                  | onfidence intervais           | Confidence Intervals    | Blas Corrected | Samples       |       |
| 2                               | 🕻 Analisis Jalur      |                |                           | Original Sample                  | (O) Sample Mean (M            | ) Standard Deviation    | T Statistic    | P Values      |       |
| DataAnalisisJalur [200 records] |                       |                | X1_1 <- Lingkungan        | 0.                               | 815 0.81                      | 7 0.025                 | 32.854         | 0.000         |       |
|                                 | nalisis SEM           |                | X1_2 <- Lingkungan        | 0.                               | 328 0.82                      | 9 0.029                 | 28.398         | 0.000         |       |
| 1                               | DataSEM (300 records) |                | X1_3 <- Lingkungan        | 0.                               | 303 0.80                      | 5 0.026                 | 31.408         | 0.000         |       |
| Ā                               | rchive                |                | X1_4 <- Lingkungan        | 0.                               | 786 0.78                      | 5 0.028                 | 28.369         | 0.000         |       |
|                                 |                       |                | X1_5 <- Lingkungan        | 0.                               | 788 0.79                      | 1 0.036                 | 21.905         | 0.000         |       |
| ) Indi                          | cators                | X X X          | X2_1 <- Kasek             | 0.                               | 336 0.83                      | 5 0.028                 | 30.149         | 0.000         |       |
| о.                              | Indicator             |                | X2_2 <- Kasek             | 0.                               | 364 0.864                     | 4 0.022                 | 39.321         | 0.000         |       |
|                                 | X1_1                  |                | X2_3 <- Kasek             | 0.                               | 340 0.83                      | 9 0.026                 | 32.498         | 0.000         |       |
|                                 | X1_2                  |                | Y1_1 <- Motivasi          | 0.                               | 330 0.83                      | 0.027                   | 30.950         | 0.000         |       |
|                                 | X1_3                  |                | Y1_2 <- Motivasi          | 0.                               | 0.81                          | 2 0.028                 | 28.572         | 0.000         |       |
|                                 | X1_4                  |                | Y1_3 <- Motivasi          | 0.                               | 335 0.83                      | 5 0.027                 | 31.108         | 0.000         |       |
|                                 | X1_5                  |                | Y1_4 <- Motivasi          | 0.                               | 316 0.81                      | 5 0.027                 | 29.684         | 0.000         |       |
|                                 | X2_1                  |                | Y2_1 <- Kompetensi        | 0.                               | 325 0.82                      | 4 0.031                 | 26.939         | 0.000         |       |
|                                 | X2_2                  |                | Y2_2 <- Kompetensi        | 0.                               | 791 0.79                      | 1 0.033                 | 23.984         | 0.000         |       |
|                                 | X2_3                  |                | Y2_3 <- Kompetensi        | 0.                               | 746 0.74                      | 5 0.037                 | 20.123         | 0.000         |       |
|                                 | ¥1_1                  |                | Y2_4 <- Kompetensi        | 0.                               | 335 0.83                      | 5 0.023                 | 36.487         | 0.000         |       |
| 0                               | ¥1_2                  |                |                           |                                  |                               |                         |                |               |       |
| 1                               | Y1_3                  |                |                           |                                  |                               |                         |                |               |       |
| 2                               | ¥1_4                  |                |                           |                                  |                               |                         |                |               |       |
| 3                               | Y2_1                  |                |                           |                                  |                               |                         |                |               |       |
| 4                               | ¥2_2                  |                | Final Results             | Histograms                       | Base Data                     |                         |                |               |       |
| 5                               | ¥2_3                  |                | Path Coefficients         | Path Coefficients His            | togram Setting                |                         |                |               |       |
| 6                               | ¥2_4                  |                | Total Indirect Effects    | Indirect Effects Histo           | gram Inner Model              |                         |                |               |       |
|                                 |                       |                | Specific Indirect Effects | Total Effects Histogra           | m Outer Model                 |                         |                |               |       |
|                                 |                       |                | Total Effects             |                                  | Indicator Data (              | Original)               |                |               |       |
|                                 |                       |                | Outer Loadings            | /                                | Indicator Data (              | Standardized)           |                |               |       |

Semua loading factor menunjukkan angka di atas 0,7 dan semua memiliki nilai p di bawah 0,05, sehingga dapat dikatakan bahwa semua variabel observed dapat mengukur secara baik variabel latennya.

Berikut gambar hasil analisis selengkapnya:



## Referensi

- Bentler, P. M., & Bonett, D. G. (1980). Significance Tests and Goodness-of-Fit in the Analysis of Covariance Structures, *Psychological Bulletin*, 88: 588-600
- Garson, G. D. (2016). *Partial Least Squares: Regression and Structural Equation Models*. Asheboro, NC: Statistical Associates Publishers.
- Ghozali, I. (2008). *Structural Equation Model Metode Alternatif dengan Partial Least Square.* Semarang: Badan Penerbit Undip
- Hair, J. F., Hult, G. T. M., Ringle, C. M., and Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2<sup>nd</sup> Ed., Thousand Oaks: Sage.
- Hansmann, K.W & Ringle. (2004). *SmartPLS Manual Version 2.0.* Hamburg: University of Hamburg.